summaryrefslogtreecommitdiff
path: root/kms++/src/card.cpp
blob: f7f1a5aa3598c246807afaa6e6e90bafb1212a47 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
#include <stdio.h>
#include <unistd.h>
#include <fcntl.h>
#include <utility>
#include <stdexcept>
#include <string.h>
#include <algorithm>

#include <xf86drm.h>
#include <xf86drmMode.h>

#include <kms++/kms++.h>

using namespace std;

namespace kms
{

Card::Card()
	: Card("/dev/dri/card0")
{
}


Card::Card(const std::string& device)
{
	int fd = open(device.c_str(), O_RDWR | O_CLOEXEC);
	if (fd < 0)
		throw invalid_argument(string(strerror(errno)) + " opening " + device);
	m_fd = fd;

	int r;

	r = drmSetMaster(fd);
	m_master = r == 0;

	if (getenv("KMSXX_DISABLE_UNIVERSAL_PLANES") == 0) {
		r = drmSetClientCap(m_fd, DRM_CLIENT_CAP_UNIVERSAL_PLANES, 1);
		m_has_universal_planes = r == 0;
	} else {
		m_has_universal_planes = false;
	}

#ifdef DRM_CLIENT_CAP_ATOMIC
	if (getenv("KMSXX_DISABLE_ATOMIC") == 0) {
		r = drmSetClientCap(m_fd, DRM_CLIENT_CAP_ATOMIC, 1);
		m_has_atomic = r == 0;
	} else {
		m_has_atomic = false;
	}
#else
	m_has_atomic = false;
#endif

	uint64_t has_dumb;
	r = drmGetCap(fd, DRM_CAP_DUMB_BUFFER, &has_dumb);
	if (r || !has_dumb)
		throw invalid_argument("Dumb buffers not available");

	auto res = drmModeGetResources(m_fd);
	if (!res)
		throw invalid_argument("Can't get card resources");

	for (int i = 0; i < res->count_connectors; ++i) {
		uint32_t id = res->connectors[i];
		auto ob = new Connector(*this, id, i);
		m_obmap[id] = ob;
		m_connectors.push_back(ob);
	}

	for (int i = 0; i < res->count_crtcs; ++i) {
		uint32_t id = res->crtcs[i];
		auto ob = new Crtc(*this, id, i);
		m_obmap[id] = ob;
		m_crtcs.push_back(ob);
	}

	for (int i = 0; i < res->count_encoders; ++i) {
		uint32_t id = res->encoders[i];
		auto ob = new Encoder(*this, id, i);
		m_obmap[id] = ob;
		m_encoders.push_back(ob);
	}

	drmModeFreeResources(res);

	auto planeRes = drmModeGetPlaneResources(m_fd);

	for (uint i = 0; i < planeRes->count_planes; ++i) {
		uint32_t id = planeRes->planes[i];
		auto ob = new Plane(*this, id, i);
		m_obmap[id] = ob;
		m_planes.push_back(ob);
	}

	drmModeFreePlaneResources(planeRes);

	// collect all possible props
	for (auto ob : get_objects()) {
		auto props = drmModeObjectGetProperties(m_fd, ob->id(), ob->object_type());

		if (props == nullptr)
			continue;

		for (unsigned i = 0; i < props->count_props; ++i) {
			uint32_t prop_id = props->props[i];

			if (m_obmap.find(prop_id) == m_obmap.end()) {
				auto ob = new Property(*this, prop_id);
				m_obmap[prop_id] = ob;
				m_properties.push_back(ob);
			}
		}

		drmModeFreeObjectProperties(props);
	}

	for (auto pair : m_obmap)
		pair.second->setup();
}

Card::~Card()
{
	restore_modes();

	while (m_framebuffers.size() > 0)
		delete m_framebuffers.back();

	for (auto pair : m_obmap)
		delete pair.second;

	close(m_fd);
}

void Card::drop_master()
{
	drmDropMaster(fd());
}

void Card::restore_modes()
{
	for (auto conn : get_connectors())
		conn->restore_mode();
}

Connector* Card::get_first_connected_connector() const
{
	for(auto c : m_connectors) {
		if (c->connected())
			return c;
	}

	throw invalid_argument("no connected connectors");
}

DrmObject* Card::get_object(uint32_t id) const
{
	auto iter = m_obmap.find(id);
	if (iter != m_obmap.end())
		return iter->second;
	return nullptr;
}

const vector<DrmObject*> Card::get_objects() const
{
	vector<DrmObject*> v;
	for(auto pair : m_obmap)
		v.push_back(pair.second);
	return v;
}

Connector* Card::get_connector(uint32_t id) const { return dynamic_cast<Connector*>(get_object(id)); }
Crtc* Card::get_crtc(uint32_t id) const { return dynamic_cast<Crtc*>(get_object(id)); }
Encoder* Card::get_encoder(uint32_t id) const { return dynamic_cast<Encoder*>(get_object(id)); }
Property* Card::get_prop(uint32_t id) const { return dynamic_cast<Property*>(get_object(id)); }
Plane* Card::get_plane(uint32_t id) const { return dynamic_cast<Plane*>(get_object(id)); }

std::vector<kms::Pipeline> Card::get_connected_pipelines()
{
	vector<Pipeline> outputs;

	for (auto conn : get_connectors())
	{
		if (conn->connected() == false)
			continue;

		Crtc* crtc = conn->get_current_crtc();

		if (!crtc) {
			for (auto possible : conn->get_possible_crtcs()) {
				if (find_if(outputs.begin(), outputs.end(), [possible](Pipeline out) { return out.crtc == possible; }) == outputs.end()) {
					crtc = possible;
					break;
				}
			}
		}

		if (!crtc)
			throw invalid_argument(string("Connector #") +
					       to_string(conn->idx()) +
					       " has no possible crtcs");

		outputs.push_back(Pipeline { crtc, conn });
	}

	return outputs;
}

static void page_flip_handler(int fd, unsigned int frame,
			      unsigned int sec, unsigned int usec,
			      void *data)
{
	auto handler = (PageFlipHandlerBase*)data;
	double time = sec + usec / 1000000.0;
	handler->handle_page_flip(frame, time);
}

void Card::call_page_flip_handlers()
{
	drmEventContext ev { };
	ev.version = DRM_EVENT_CONTEXT_VERSION;
	ev.page_flip_handler = page_flip_handler;

	drmHandleEvent(fd(), &ev);
}

int Card::disable_all()
{
	AtomicReq req(*this);

	for (Crtc* c : m_crtcs) {
		req.add(c, {
				{ "ACTIVE", 0 },
			});
	}

	for (Plane* p : m_planes) {
		req.add(p, {
				{ "FB_ID", 0 },
				{ "CRTC_ID", 0 },
			});
	}

	return req.commit_sync(true);
}

}
' href='#n1077'>1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161
/* mga_dma.c -- DMA support for mga g200/g400 -*- linux-c -*-
 * Created: Mon Dec 13 01:50:01 1999 by jhartmann@precisioninsight.com
 */
/* Copyright 1999 Precision Insight, Inc., Cedar Park, Texas.
 * Copyright 2000 VA Linux Systems, Inc., Sunnyvale, California.
 * All Rights Reserved.
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * PRECISION INSIGHT AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM, DAMAGES OR
 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
 * DEALINGS IN THE SOFTWARE.
 */

/**
 * \file mga_dma.c
 * DMA support for MGA G200 / G400.
 *
 * \author Rickard E. (Rik) Faith <faith@valinux.com>
 * \author Jeff Hartmann <jhartmann@valinux.com>
 * \author Keith Whitwell <keith@tungstengraphics.com>
 * \author Gareth Hughes <gareth@valinux.com>
 */

#include "drmP.h"
#include "drm.h"
#include "drm_sarea.h"
#include "mga_drm.h"
#include "mga_drv.h"

#define MGA_DEFAULT_USEC_TIMEOUT	10000
#define MGA_FREELIST_DEBUG		0

#define MINIMAL_CLEANUP    0
#define FULL_CLEANUP       1
static int mga_do_cleanup_dma(struct drm_device *dev, int full_cleanup);

/* ================================================================
 * Engine control
 */

int mga_do_wait_for_idle(drm_mga_private_t * dev_priv)
{
	u32 status = 0;
	int i;
	DRM_DEBUG("\n");

	for (i = 0; i < dev_priv->usec_timeout; i++) {
		status = MGA_READ(MGA_STATUS) & MGA_ENGINE_IDLE_MASK;
		if (status == MGA_ENDPRDMASTS) {
			MGA_WRITE8(MGA_CRTC_INDEX, 0);
			return 0;
		}
		DRM_UDELAY(1);
	}

#if MGA_DMA_DEBUG
	DRM_ERROR("failed!\n");
	DRM_INFO("   status=0x%08x\n", status);
#endif
	return -EBUSY;
}

static int mga_do_dma_reset(drm_mga_private_t * dev_priv)
{
	drm_mga_sarea_t *sarea_priv = dev_priv->sarea_priv;
	drm_mga_primary_buffer_t *primary = &dev_priv->prim;

	DRM_DEBUG("\n");

	/* The primary DMA stream should look like new right about now.
	 */
	primary->tail = 0;
	primary->space = primary->size;
	primary->last_flush = 0;

	sarea_priv->last_wrap = 0;

	/* FIXME: Reset counters, buffer ages etc...
	 */

	/* FIXME: What else do we need to reinitialize?  WARP stuff?
	 */

	return 0;
}

/* ================================================================
 * Primary DMA stream
 */

void mga_do_dma_flush(drm_mga_private_t * dev_priv)
{
	drm_mga_primary_buffer_t *primary = &dev_priv->prim;
	u32 head, tail;
	u32 status = 0;
	int i;
	DMA_LOCALS;
	DRM_DEBUG("\n");

	/* We need to wait so that we can do an safe flush */
	for (i = 0; i < dev_priv->usec_timeout; i++) {
		status = MGA_READ(MGA_STATUS) & MGA_ENGINE_IDLE_MASK;
		if (status == MGA_ENDPRDMASTS)
			break;
		DRM_UDELAY(1);
	}

	if (primary->tail == primary->last_flush) {
		DRM_DEBUG("   bailing out...\n");
		return;
	}

	tail = primary->tail + dev_priv->primary->offset;

	/* We need to pad the stream between flushes, as the card
	 * actually (partially?) reads the first of these commands.
	 * See page 4-16 in the G400 manual, middle of the page or so.
	 */
	BEGIN_DMA(1);

	DMA_BLOCK(MGA_DMAPAD, 0x00000000,
		  MGA_DMAPAD, 0x00000000,
		  MGA_DMAPAD, 0x00000000, MGA_DMAPAD, 0x00000000);

	ADVANCE_DMA();

	primary->last_flush = primary->tail;

	head = MGA_READ(MGA_PRIMADDRESS);

	if (head <= tail) {
		primary->space = primary->size - primary->tail;
	} else {
		primary->space = head - tail;
	}

	DRM_DEBUG("   head = 0x%06lx\n", head - dev_priv->primary->offset);
	DRM_DEBUG("   tail = 0x%06lx\n", tail - dev_priv->primary->offset);
	DRM_DEBUG("  space = 0x%06x\n", primary->space);

	mga_flush_write_combine();
	MGA_WRITE(MGA_PRIMEND, tail | dev_priv->dma_access);

	DRM_DEBUG("done.\n");
}

void mga_do_dma_wrap_start(drm_mga_private_t * dev_priv)
{
	drm_mga_primary_buffer_t *primary = &dev_priv->prim;
	u32 head, tail;
	DMA_LOCALS;
	DRM_DEBUG("\n");

	BEGIN_DMA_WRAP();

	DMA_BLOCK(MGA_DMAPAD, 0x00000000,
		  MGA_DMAPAD, 0x00000000,
		  MGA_DMAPAD, 0x00000000, MGA_DMAPAD, 0x00000000);

	ADVANCE_DMA();

	tail = primary->tail + dev_priv->primary->offset;

	primary->tail = 0;
	primary->last_flush = 0;
	primary->last_wrap++;

	head = MGA_READ(MGA_PRIMADDRESS);

	if (head == dev_priv->primary->offset) {
		primary->space = primary->size;
	} else {
		primary->space = head - dev_priv->primary->offset;
	}

	DRM_DEBUG("   head = 0x%06lx\n", head - dev_priv->primary->offset);
	DRM_DEBUG("   tail = 0x%06x\n", primary->tail);
	DRM_DEBUG("   wrap = %d\n", primary->last_wrap);
	DRM_DEBUG("  space = 0x%06x\n", primary->space);

	mga_flush_write_combine();
	MGA_WRITE(MGA_PRIMEND, tail | dev_priv->dma_access);

	set_bit(0, &primary->wrapped);
	DRM_DEBUG("done.\n");
}

void mga_do_dma_wrap_end(drm_mga_private_t * dev_priv)
{
	drm_mga_primary_buffer_t *primary = &dev_priv->prim;
	drm_mga_sarea_t *sarea_priv = dev_priv->sarea_priv;
	u32 head = dev_priv->primary->offset;
	DRM_DEBUG("\n");

	sarea_priv->last_wrap++;
	DRM_DEBUG("   wrap = %d\n", sarea_priv->last_wrap);

	mga_flush_write_combine();
	MGA_WRITE(MGA_PRIMADDRESS, head | MGA_DMA_GENERAL);

	clear_bit(0, &primary->wrapped);
	DRM_DEBUG("done.\n");
}

/* ================================================================
 * Freelist management
 */

#define MGA_BUFFER_USED		~0
#define MGA_BUFFER_FREE		0

#if MGA_FREELIST_DEBUG
static void mga_freelist_print(struct drm_device * dev)
{
	drm_mga_private_t *dev_priv = dev->dev_private;
	drm_mga_freelist_t *entry;

	DRM_INFO("\n");
	DRM_INFO("current dispatch: last=0x%x done=0x%x\n",
		 dev_priv->sarea_priv->last_dispatch,
		 (unsigned int)(MGA_READ(MGA_PRIMADDRESS) -
				dev_priv->primary->offset));
	DRM_INFO("current freelist:\n");

	for (entry = dev_priv->head->next; entry; entry = entry->next) {
		DRM_INFO("   %p   idx=%2d  age=0x%x 0x%06lx\n",
			 entry, entry->buf->idx, entry->age.head,
			 entry->age.head - dev_priv->primary->offset);
	}
	DRM_INFO("\n");
}
#endif

static int mga_freelist_init(struct drm_device * dev, drm_mga_private_t * dev_priv)
{
	struct drm_device_dma *dma = dev->dma;
	struct drm_buf *buf;
	drm_mga_buf_priv_t *buf_priv;
	drm_mga_freelist_t *entry;
	int i;
	DRM_DEBUG("count=%d\n", dma->buf_count);

	dev_priv->head = drm_alloc(sizeof(drm_mga_freelist_t), DRM_MEM_DRIVER);
	if (dev_priv->head == NULL)
		return -ENOMEM;

	memset(dev_priv->head, 0, sizeof(drm_mga_freelist_t));
	SET_AGE(&dev_priv->head->age, MGA_BUFFER_USED, 0);

	for (i = 0; i < dma->buf_count; i++) {
		buf = dma->buflist[i];
		buf_priv = buf->dev_private;

		entry = drm_alloc(sizeof(drm_mga_freelist_t), DRM_MEM_DRIVER);
		if (entry == NULL)
			return -ENOMEM;

		memset(entry, 0, sizeof(drm_mga_freelist_t));

		entry->next = dev_priv->head->next;
		entry->prev = dev_priv->head;
		SET_AGE(&entry->age, MGA_BUFFER_FREE, 0);
		entry->buf = buf;

		if (dev_priv->head->next != NULL)
			dev_priv->head->next->prev = entry;
		if (entry->next == NULL)
			dev_priv->tail = entry;

		buf_priv->list_entry = entry;
		buf_priv->discard = 0;
		buf_priv->dispatched = 0;

		dev_priv->head->next = entry;
	}

	return 0;
}

static void mga_freelist_cleanup(struct drm_device * dev)
{
	drm_mga_private_t *dev_priv = dev->dev_private;
	drm_mga_freelist_t *entry;
	drm_mga_freelist_t *next;
	DRM_DEBUG("\n");

	entry = dev_priv->head;
	while (entry) {
		next = entry->next;
		drm_free(entry, sizeof(drm_mga_freelist_t), DRM_MEM_DRIVER);
		entry = next;
	}

	dev_priv->head = dev_priv->tail = NULL;
}

#if 0
/* FIXME: Still needed?
 */
static void mga_freelist_reset(struct drm_device * dev)
{
	drm_device_dma_t *dma = dev->dma;
	struct drm_buf *buf;
	drm_mga_buf_priv_t *buf_priv;
	int i;

	for (i = 0; i < dma->buf_count; i++) {
		buf = dma->buflist[i];
		buf_priv = buf->dev_private;
		SET_AGE(&buf_priv->list_entry->age, MGA_BUFFER_FREE, 0);
	}
}
#endif

static struct drm_buf *mga_freelist_get(struct drm_device * dev)
{
	drm_mga_private_t *dev_priv = dev->dev_private;
	drm_mga_freelist_t *next;
	drm_mga_freelist_t *prev;
	drm_mga_freelist_t *tail = dev_priv->tail;
	u32 head, wrap;
	DRM_DEBUG("\n");

	head = MGA_READ(MGA_PRIMADDRESS);
	wrap = dev_priv->sarea_priv->last_wrap;

	DRM_DEBUG("   tail=0x%06lx %d\n",
		  tail->age.head ?
		  tail->age.head - dev_priv->primary->offset : 0,
		  tail->age.wrap);
	DRM_DEBUG("   head=0x%06lx %d\n",
		  head - dev_priv->primary->offset, wrap);

	if (TEST_AGE(&tail->age, head, wrap)) {
		prev = dev_priv->tail->prev;
		next = dev_priv->tail;
		prev->next = NULL;
		next->prev = next->next = NULL;
		dev_priv->tail = prev;
		SET_AGE(&next->age, MGA_BUFFER_USED, 0);
		return next->buf;
	}

	DRM_DEBUG("returning NULL!\n");
	return NULL;
}

int mga_freelist_put(struct drm_device * dev, struct drm_buf * buf)
{
	drm_mga_private_t *dev_priv = dev->dev_private;
	drm_mga_buf_priv_t *buf_priv = buf->dev_private;
	drm_mga_freelist_t *head, *entry, *prev;

	DRM_DEBUG("age=0x%06lx wrap=%d\n",
		  buf_priv->list_entry->age.head -
		  dev_priv->primary->offset, buf_priv->list_entry->age.wrap);

	entry = buf_priv->list_entry;
	head = dev_priv->head;

	if (buf_priv->list_entry->age.head == MGA_BUFFER_USED) {
		SET_AGE(&entry->age, MGA_BUFFER_FREE, 0);
		prev = dev_priv->tail;
		prev->next = entry;
		entry->prev = prev;
		entry->next = NULL;
	} else {
		prev = head->next;
		head->next = entry;
		prev->prev = entry;
		entry->prev = head;
		entry->next = prev;
	}

	return 0;
}

/* ================================================================
 * DMA initialization, cleanup
 */

int mga_driver_load(struct drm_device *dev, unsigned long flags)
{
	drm_mga_private_t *dev_priv;

	dev_priv = drm_alloc(sizeof(drm_mga_private_t), DRM_MEM_DRIVER);
	if (!dev_priv)
		return -ENOMEM;

	dev->dev_private = (void *)dev_priv;
	memset(dev_priv, 0, sizeof(drm_mga_private_t));

	dev_priv->usec_timeout = MGA_DEFAULT_USEC_TIMEOUT;
	dev_priv->chipset = flags;

	dev_priv->mmio_base = drm_get_resource_start(dev, 1);
	dev_priv->mmio_size = drm_get_resource_len(dev, 1);

	dev->counters += 3;
	dev->types[6] = _DRM_STAT_IRQ;
	dev->types[7] = _DRM_STAT_PRIMARY;
	dev->types[8] = _DRM_STAT_SECONDARY;

	return 0;
}

/**
 * Bootstrap the driver for AGP DMA.
 *
 * \todo
 * Investigate whether there is any benifit to storing the WARP microcode in
 * AGP memory.  If not, the microcode may as well always be put in PCI
 * memory.
 *
 * \todo
 * This routine needs to set dma_bs->agp_mode to the mode actually configured
 * in the hardware.  Looking just at the Linux AGP driver code, I don't see
 * an easy way to determine this.
 *
 * \sa mga_do_dma_bootstrap, mga_do_pci_dma_bootstrap
 */
static int mga_do_agp_dma_bootstrap(struct drm_device *dev,
				    drm_mga_dma_bootstrap_t * dma_bs)
{
	drm_mga_private_t *const dev_priv =
		(drm_mga_private_t *)dev->dev_private;
	unsigned int warp_size = mga_warp_microcode_size(dev_priv);
	int err;
	unsigned offset;
	const unsigned secondary_size = dma_bs->secondary_bin_count
		* dma_bs->secondary_bin_size;
	const unsigned agp_size = (dma_bs->agp_size << 20);
	struct drm_buf_desc req;
	struct drm_agp_mode mode;
	struct drm_agp_info info;
	struct drm_agp_buffer agp_req;
	struct drm_agp_binding bind_req;

	/* Acquire AGP. */
	err = drm_agp_acquire(dev);
	if (err) {
		DRM_ERROR("Unable to acquire AGP: %d\n", err);
		return err;
	}

	err = drm_agp_info(dev, &info);
	if (err) {
		DRM_ERROR("Unable to get AGP info: %d\n", err);
		return err;
	}

	mode.mode = (info.mode & ~0x07) | dma_bs->agp_mode;
	err = drm_agp_enable(dev, mode);
	if (err) {
		DRM_ERROR("Unable to enable AGP (mode = 0x%lx)\n", mode.mode);
		return err;
	}

	/* In addition to the usual AGP mode configuration, the G200 AGP cards
	 * need to have the AGP mode "manually" set.
	 */

	if (dev_priv->chipset == MGA_CARD_TYPE_G200) {
		if (mode.mode & 0x02) {
			MGA_WRITE(MGA_AGP_PLL, MGA_AGP2XPLL_ENABLE);
		} else {
			MGA_WRITE(MGA_AGP_PLL, MGA_AGP2XPLL_DISABLE);
		}
	}

	/* Allocate and bind AGP memory. */
	agp_req.size = agp_size;
	agp_req.type = 0;
	err = drm_agp_alloc(dev, &agp_req);
	if (err) {
		dev_priv->agp_size = 0;
		DRM_ERROR("Unable to allocate %uMB AGP memory\n",
			  dma_bs->agp_size);
		return err;
	}

	dev_priv->agp_size = agp_size;
	dev_priv->agp_handle = agp_req.handle;

	bind_req.handle = agp_req.handle;
	bind_req.offset = 0;
	err = drm_agp_bind( dev, &bind_req );
	if (err) {
		DRM_ERROR("Unable to bind AGP memory: %d\n", err);
		return err;
	}

	/* Make drm_addbufs happy by not trying to create a mapping for less
	 * than a page.
	 */
	if (warp_size < PAGE_SIZE)
		warp_size = PAGE_SIZE;

	offset = 0;
	err = drm_addmap(dev, offset, warp_size,
			 _DRM_AGP, _DRM_READ_ONLY, &dev_priv->warp);
	if (err) {
		DRM_ERROR("Unable to map WARP microcode: %d\n", err);
		return err;
	}

	offset += warp_size;
	err = drm_addmap(dev, offset, dma_bs->primary_size,
			 _DRM_AGP, _DRM_READ_ONLY, & dev_priv->primary);
	if (err) {
		DRM_ERROR("Unable to map primary DMA region: %d\n", err);
		return err;
	}

	offset += dma_bs->primary_size;
	err = drm_addmap(dev, offset, secondary_size,
			 _DRM_AGP, 0, & dev->agp_buffer_map);
	if (err) {
		DRM_ERROR("Unable to map secondary DMA region: %d\n", err);
		return err;
	}

	(void)memset( &req, 0, sizeof(req) );
	req.count = dma_bs->secondary_bin_count;
	req.size = dma_bs->secondary_bin_size;
	req.flags = _DRM_AGP_BUFFER;
	req.agp_start = offset;

	err = drm_addbufs_agp(dev, &req);
	if (err) {
		DRM_ERROR("Unable to add secondary DMA buffers: %d\n", err);
		return err;
	}

#ifdef __linux__
	{
		struct drm_map_list *_entry;
		unsigned long agp_token = 0;

		list_for_each_entry(_entry, &dev->maplist, head) {
			if (_entry->map == dev->agp_buffer_map)
				agp_token = _entry->user_token;
		}
		if (!agp_token)
			return -EFAULT;

		dev->agp_buffer_token = agp_token;
	}
#endif

	offset += secondary_size;
	err = drm_addmap(dev, offset, agp_size - offset,
			 _DRM_AGP, 0, & dev_priv->agp_textures);
	if (err) {
		DRM_ERROR("Unable to map AGP texture region: %d\n", err);
		return err;
	}

	drm_core_ioremap(dev_priv->warp, dev);
	drm_core_ioremap(dev_priv->primary, dev);
	drm_core_ioremap(dev->agp_buffer_map, dev);

	if (!dev_priv->warp->handle ||
	    !dev_priv->primary->handle || !dev->agp_buffer_map->handle) {
		DRM_ERROR("failed to ioremap agp regions! (%p, %p, %p)\n",
			  dev_priv->warp->handle, dev_priv->primary->handle,
			  dev->agp_buffer_map->handle);
		return -ENOMEM;
	}

	dev_priv->dma_access = MGA_PAGPXFER;
	dev_priv->wagp_enable = MGA_WAGP_ENABLE;

	DRM_INFO("Initialized card for AGP DMA.\n");
	return 0;
}

/**
 * Bootstrap the driver for PCI DMA.
 *
 * \todo
 * The algorithm for decreasing the size of the primary DMA buffer could be
 * better.  The size should be rounded up to the nearest page size, then
 * decrease the request size by a single page each pass through the loop.
 *
 * \todo
 * Determine whether the maximum address passed to drm_pci_alloc is correct.
 * The same goes for drm_addbufs_pci.
 *
 * \sa mga_do_dma_bootstrap, mga_do_agp_dma_bootstrap
 */
static int mga_do_pci_dma_bootstrap(struct drm_device * dev,
				    drm_mga_dma_bootstrap_t * dma_bs)
{
	drm_mga_private_t *const dev_priv =
		(drm_mga_private_t *) dev->dev_private;
	unsigned int warp_size = mga_warp_microcode_size(dev_priv);
	unsigned int primary_size;
	unsigned int bin_count;
	int err;
	struct drm_buf_desc req;


	if (dev->dma == NULL) {
		DRM_ERROR("dev->dma is NULL\n");
		return -EFAULT;
	}

	/* Make drm_addbufs happy by not trying to create a mapping for less
	 * than a page.
	 */
	if (warp_size < PAGE_SIZE)
		warp_size = PAGE_SIZE;

	/* The proper alignment is 0x100 for this mapping */
	err = drm_addmap(dev, 0, warp_size, _DRM_CONSISTENT,
			 _DRM_READ_ONLY, &dev_priv->warp);
	if (err != 0) {
		DRM_ERROR("Unable to create mapping for WARP microcode: %d\n",
			  err);
		return err;
	}

	/* Other than the bottom two bits being used to encode other
	 * information, there don't appear to be any restrictions on the
	 * alignment of the primary or secondary DMA buffers.
	 */

	for (primary_size = dma_bs->primary_size; primary_size != 0;
	     primary_size >>= 1 ) {
		/* The proper alignment for this mapping is 0x04 */
		err = drm_addmap(dev, 0, primary_size, _DRM_CONSISTENT,
				 _DRM_READ_ONLY, &dev_priv->primary);
		if (!err)
			break;
	}

	if (err != 0) {
		DRM_ERROR("Unable to allocate primary DMA region: %d\n", err);
		return -ENOMEM;
	}

	if (dev_priv->primary->size != dma_bs->primary_size) {
		DRM_INFO("Primary DMA buffer size reduced from %u to %u.\n",
			 dma_bs->primary_size,
			 (unsigned)dev_priv->primary->size);
		dma_bs->primary_size = dev_priv->primary->size;
	}

	for (bin_count = dma_bs->secondary_bin_count; bin_count > 0;
	     bin_count-- ) {
		(void)memset(&req, 0, sizeof(req));
		req.count = bin_count;
		req.size = dma_bs->secondary_bin_size;

		err = drm_addbufs_pci(dev, &req);
		if (!err) {
			break;
		}
	}

	if (bin_count == 0) {
		DRM_ERROR("Unable to add secondary DMA buffers: %d\n", err);
		return err;
	}

	if (bin_count != dma_bs->secondary_bin_count) {
		DRM_INFO("Secondary PCI DMA buffer bin count reduced from %u "
			 "to %u.\n", dma_bs->secondary_bin_count, bin_count);

		dma_bs->secondary_bin_count = bin_count;
	}

	dev_priv->dma_access = 0;
	dev_priv->wagp_enable = 0;

	dma_bs->agp_mode = 0;

	DRM_INFO("Initialized card for PCI DMA.\n");
	return 0;
}


static int mga_do_dma_bootstrap(struct drm_device *dev,
				drm_mga_dma_bootstrap_t *dma_bs)
{
	const int is_agp = (dma_bs->agp_mode != 0) && drm_device_is_agp(dev);
	int err;
	drm_mga_private_t *const dev_priv =
		(drm_mga_private_t *) dev->dev_private;


	dev_priv->used_new_dma_init = 1;

	/* The first steps are the same for both PCI and AGP based DMA.  Map
	 * the cards MMIO registers and map a status page.
	 */
	err = drm_addmap(dev, dev_priv->mmio_base, dev_priv->mmio_size,
			 _DRM_REGISTERS, _DRM_READ_ONLY, & dev_priv->mmio);
	if (err) {
		DRM_ERROR("Unable to map MMIO region: %d\n", err);
		return err;
	}


	err = drm_addmap(dev, 0, SAREA_MAX, _DRM_SHM,
			 _DRM_READ_ONLY | _DRM_LOCKED | _DRM_KERNEL,
			 & dev_priv->status);
	if (err) {
		DRM_ERROR("Unable to map status region: %d\n", err);
		return err;
	}


	/* The DMA initialization procedure is slightly different for PCI and
	 * AGP cards.  AGP cards just allocate a large block of AGP memory and
	 * carve off portions of it for internal uses.  The remaining memory
	 * is returned to user-mode to be used for AGP textures.
	 */

	if (is_agp) {
		err = mga_do_agp_dma_bootstrap(dev, dma_bs);
	}

	/* If we attempted to initialize the card for AGP DMA but failed,
	 * clean-up any mess that may have been created.
	 */

	if (err) {
		mga_do_cleanup_dma(dev, MINIMAL_CLEANUP);
	}


	/* Not only do we want to try and initialized PCI cards for PCI DMA,
	 * but we also try to initialized AGP cards that could not be
	 * initialized for AGP DMA.  This covers the case where we have an AGP
	 * card in a system with an unsupported AGP chipset.  In that case the
	 * card will be detected as AGP, but we won't be able to allocate any
	 * AGP memory, etc.
	 */

	if (!is_agp || err) {
		err = mga_do_pci_dma_bootstrap(dev, dma_bs);
	}


	return err;
}

int mga_dma_bootstrap(struct drm_device *dev, void *data,
		      struct drm_file *file_priv)
{
	drm_mga_dma_bootstrap_t *bootstrap = data;
	int err;
	static const int modes[] = { 0, 1, 2, 2, 4, 4, 4, 4 };
	const drm_mga_private_t *const dev_priv =
		(drm_mga_private_t *) dev->dev_private;


	err = mga_do_dma_bootstrap(dev, bootstrap);
	if (err) {
		mga_do_cleanup_dma(dev, FULL_CLEANUP);
		return err;
	}

	if (dev_priv->agp_textures != NULL) {
		bootstrap->texture_handle = dev_priv->agp_textures->offset;
		bootstrap->texture_size = dev_priv->agp_textures->size;
	} else {
		bootstrap->texture_handle = 0;
		bootstrap->texture_size = 0;
	}

	bootstrap->agp_mode = modes[bootstrap->agp_mode & 0x07];

	return 0;
}


static int mga_do_init_dma(struct drm_device * dev, drm_mga_init_t * init)
{
	drm_mga_private_t *dev_priv;
	int ret;
	DRM_DEBUG("\n");


	dev_priv = dev->dev_private;

	if (init->sgram) {
		dev_priv->clear_cmd = MGA_DWGCTL_CLEAR | MGA_ATYPE_BLK;
	} else {
		dev_priv->clear_cmd = MGA_DWGCTL_CLEAR | MGA_ATYPE_RSTR;
	}
	dev_priv->maccess = init->maccess;

	dev_priv->fb_cpp = init->fb_cpp;
	dev_priv->front_offset = init->front_offset;
	dev_priv->front_pitch = init->front_pitch;
	dev_priv->back_offset = init->back_offset;
	dev_priv->back_pitch = init->back_pitch;

	dev_priv->depth_cpp = init->depth_cpp;
	dev_priv->depth_offset = init->depth_offset;
	dev_priv->depth_pitch = init->depth_pitch;

	/* FIXME: Need to support AGP textures...
	 */
	dev_priv->texture_offset = init->texture_offset[0];
	dev_priv->texture_size = init->texture_size[0];

	dev_priv->sarea = drm_getsarea(dev);
	if (!dev_priv->sarea) {
		DRM_ERROR("failed to find sarea!\n");
		return -EINVAL;
	}

	if (!dev_priv->used_new_dma_init) {

		dev_priv->dma_access = MGA_PAGPXFER;
		dev_priv->wagp_enable = MGA_WAGP_ENABLE;

		dev_priv->status = drm_core_findmap(dev, init->status_offset);
		if (!dev_priv->status) {
			DRM_ERROR("failed to find status page!\n");
			return -EINVAL;
		}
		dev_priv->mmio = drm_core_findmap(dev, init->mmio_offset);
		if (!dev_priv->mmio) {
			DRM_ERROR("failed to find mmio region!\n");
			return -EINVAL;
		}
		dev_priv->warp = drm_core_findmap(dev, init->warp_offset);
		if (!dev_priv->warp) {
			DRM_ERROR("failed to find warp microcode region!\n");
			return -EINVAL;
		}
		dev_priv->primary = drm_core_findmap(dev, init->primary_offset);
		if (!dev_priv->primary) {
			DRM_ERROR("failed to find primary dma region!\n");
			return -EINVAL;
		}
		dev->agp_buffer_token = init->buffers_offset;
		dev->agp_buffer_map =
			drm_core_findmap(dev, init->buffers_offset);
		if (!dev->agp_buffer_map) {
			DRM_ERROR("failed to find dma buffer region!\n");
			return -EINVAL;
		}

		drm_core_ioremap(dev_priv->warp, dev);
		drm_core_ioremap(dev_priv->primary, dev);
		drm_core_ioremap(dev->agp_buffer_map, dev);
	}

	dev_priv->sarea_priv =
	    (drm_mga_sarea_t *) ((u8 *) dev_priv->sarea->handle +
				 init->sarea_priv_offset);

	if (!dev_priv->warp->handle ||
	    !dev_priv->primary->handle ||
	    ((dev_priv->dma_access != 0) &&
	     ((dev->agp_buffer_map == NULL) ||
	      (dev->agp_buffer_map->handle == NULL)))) {
		DRM_ERROR("failed to ioremap agp regions!\n");
		return -ENOMEM;
	}

	ret = mga_warp_install_microcode(dev_priv);
	if (ret != 0) {
		DRM_ERROR("failed to install WARP ucode: %d!\n", ret);
		return ret;
	}

	ret = mga_warp_init(dev_priv);
	if (ret != 0) {
		DRM_ERROR("failed to init WARP engine: %d!\n", ret);
		return ret;
	}

	dev_priv->prim.status = (u32 *) dev_priv->status->handle;

	mga_do_wait_for_idle(dev_priv);

	/* Init the primary DMA registers.
	 */
	MGA_WRITE(MGA_PRIMADDRESS, dev_priv->primary->offset | MGA_DMA_GENERAL);

	dev_priv->prim.start = (u8 *) dev_priv->primary->handle;
	dev_priv->prim.end = ((u8 *) dev_priv->primary->handle
			      + dev_priv->primary->size);
	dev_priv->prim.size = dev_priv->primary->size;

	dev_priv->prim.tail = 0;
	dev_priv->prim.space = dev_priv->prim.size;
	dev_priv->prim.wrapped = 0;

	dev_priv->prim.last_flush = 0;
	dev_priv->prim.last_wrap = 0;

	dev_priv->prim.high_mark = 256 * DMA_BLOCK_SIZE;

	dev_priv->prim.status[0] = dev_priv->primary->offset;
	dev_priv->prim.status[1] = 0;

	dev_priv->sarea_priv->last_wrap = 0;
	dev_priv->sarea_priv->last_frame.head = 0;
	dev_priv->sarea_priv->last_frame.wrap = 0;

	if (mga_freelist_init(dev, dev_priv) < 0) {
		DRM_ERROR("could not initialize freelist\n");
		return -ENOMEM;
	}

	return 0;
}

static int mga_do_cleanup_dma(struct drm_device *dev, int full_cleanup)
{
	int err = 0;
	DRM_DEBUG("\n");

	/* Make sure interrupts are disabled here because the uninstall ioctl
	 * may not have been called from userspace and after dev_private
	 * is freed, it's too late.
	 */
	if (dev->irq_enabled)
		drm_irq_uninstall(dev);

	if (dev->dev_private) {
		drm_mga_private_t *dev_priv = dev->dev_private;

		if ((dev_priv->warp != NULL)
		    && (dev_priv->warp->type != _DRM_CONSISTENT))
			drm_core_ioremapfree(dev_priv->warp, dev);

		if ((dev_priv->primary != NULL)
		    && (dev_priv->primary->type != _DRM_CONSISTENT))
			drm_core_ioremapfree(dev_priv->primary, dev);

		if (dev->agp_buffer_map != NULL)
			drm_core_ioremapfree(dev->agp_buffer_map, dev);

		if (dev_priv->used_new_dma_init) {
			if (dev_priv->agp_handle != 0) {
				struct drm_agp_binding unbind_req;
				struct drm_agp_buffer free_req;

				unbind_req.handle = dev_priv->agp_handle;
				drm_agp_unbind(dev, &unbind_req);

				free_req.handle = dev_priv->agp_handle;
				drm_agp_free(dev, &free_req);

				dev_priv->agp_textures = NULL;
				dev_priv->agp_size = 0;
				dev_priv->agp_handle = 0;
			}

			if ((dev->agp != NULL) && dev->agp->acquired) {
				err = drm_agp_release(dev);
			}
		}

		dev_priv->warp = NULL;
		dev_priv->primary = NULL;
		dev_priv->sarea = NULL;
		dev_priv->sarea_priv = NULL;
		dev->agp_buffer_map = NULL;

		if (full_cleanup) {
			dev_priv->mmio = NULL;
			dev_priv->status = NULL;
			dev_priv->used_new_dma_init = 0;
		}

		memset(&dev_priv->prim, 0, sizeof(dev_priv->prim));
		dev_priv->warp_pipe = 0;
		memset(dev_priv->warp_pipe_phys, 0,
		       sizeof(dev_priv->warp_pipe_phys));

		if (dev_priv->head != NULL) {
			mga_freelist_cleanup(dev);
		}
	}

	return err;
}

int mga_dma_init(struct drm_device *dev, void *data,
		 struct drm_file *file_priv)
{
	drm_mga_init_t *init = data;
	int err;

	LOCK_TEST_WITH_RETURN(dev, file_priv);

	switch (init->func) {
	case MGA_INIT_DMA:
		err = mga_do_init_dma(dev, init);
		if (err) {
			(void)mga_do_cleanup_dma(dev, FULL_CLEANUP);
		}
		return err;
	case MGA_CLEANUP_DMA:
		return mga_do_cleanup_dma(dev, FULL_CLEANUP);
	}

	return -EINVAL;
}

/* ================================================================
 * Primary DMA stream management
 */

int mga_dma_flush(struct drm_device *dev, void *data,
		  struct drm_file *file_priv)
{
	drm_mga_private_t *dev_priv = (drm_mga_private_t *) dev->dev_private;
	struct drm_lock *lock = data;

	LOCK_TEST_WITH_RETURN(dev, file_priv);

	DRM_DEBUG("%s%s%s\n",
		  (lock->flags & _DRM_LOCK_FLUSH) ? "flush, " : "",
		  (lock->flags & _DRM_LOCK_FLUSH_ALL) ? "flush all, " : "",
		  (lock->flags & _DRM_LOCK_QUIESCENT) ? "idle, " : "");

	WRAP_WAIT_WITH_RETURN(dev_priv);

	if (lock->flags & (_DRM_LOCK_FLUSH | _DRM_LOCK_FLUSH_ALL)) {
		mga_do_dma_flush(dev_priv);
	}

	if (lock->flags & _DRM_LOCK_QUIESCENT) {
#if MGA_DMA_DEBUG
		int ret = mga_do_wait_for_idle(dev_priv);
		if (ret < 0)
			DRM_INFO("-EBUSY\n");
		return ret;
#else
		return mga_do_wait_for_idle(dev_priv);
#endif
	} else {
		return 0;
	}
}

int mga_dma_reset(struct drm_device *dev, void *data,
		  struct drm_file *file_priv)
{
	drm_mga_private_t *dev_priv = (drm_mga_private_t *) dev->dev_private;

	LOCK_TEST_WITH_RETURN(dev, file_priv);

	return mga_do_dma_reset(dev_priv);
}

/* ================================================================
 * DMA buffer management
 */

static int mga_dma_get_buffers(struct drm_device * dev,
			       struct drm_file *file_priv, struct drm_dma * d)
{
	struct drm_buf *buf;
	int i;

	for (i = d->granted_count; i < d->request_count; i++) {
		buf = mga_freelist_get(dev);
		if (!buf)
			return -EAGAIN;

		buf->file_priv = file_priv;

		if (DRM_COPY_TO_USER(&d->request_indices[i],
				     &buf->idx, sizeof(buf->idx)))
			return -EFAULT;
		if (DRM_COPY_TO_USER(&d->request_sizes[i],
				     &buf->total, sizeof(buf->total)))
			return -EFAULT;

		d->granted_count++;
	}
	return 0;
}

int mga_dma_buffers(struct drm_device *dev, void *data,
		    struct drm_file *file_priv)
{
	struct drm_device_dma *dma = dev->dma;
	drm_mga_private_t *dev_priv = (drm_mga_private_t *) dev->dev_private;
	struct drm_dma *d = data;
	int ret = 0;

	LOCK_TEST_WITH_RETURN(dev, file_priv);

	/* Please don't send us buffers.
	 */
	if (d->send_count != 0) {
		DRM_ERROR("Process %d trying to send %d buffers via drmDMA\n",
			  DRM_CURRENTPID, d->send_count);
		return -EINVAL;
	}

	/* We'll send you buffers.
	 */
	if (d->request_count < 0 || d->request_count > dma->buf_count) {
		DRM_ERROR("Process %d trying to get %d buffers (of %d max)\n",
			  DRM_CURRENTPID, d->request_count, dma->buf_count);
		return -EINVAL;
	}

	WRAP_TEST_WITH_RETURN(dev_priv);

	d->granted_count = 0;

	if (d->request_count) {
		ret = mga_dma_get_buffers(dev, file_priv, d);
	}

	return ret;
}

/**
 * Called just before the module is unloaded.
 */
int mga_driver_unload(struct drm_device * dev)
{
	drm_free(dev->dev_private, sizeof(drm_mga_private_t), DRM_MEM_DRIVER);
	dev->dev_private = NULL;

	return 0;
}

/**
 * Called when the last opener of the device is closed.
 */
void mga_driver_lastclose(struct drm_device * dev)
{
	mga_do_cleanup_dma(dev, FULL_CLEANUP);
}

int mga_driver_dma_quiescent(struct drm_device * dev)
{
	drm_mga_private_t *dev_priv = dev->dev_private;
	return mga_do_wait_for_idle(dev_priv);
}