/* r128_cce.c -- ATI Rage 128 driver -*- linux-c -*- * Created: Wed Apr 5 19:24:19 2000 by kevin@precisioninsight.com * * Copyright 2000 Precision Insight, Inc., Cedar Park, Texas. * Copyright 2000 VA Linux Systems, Inc., Sunnyvale, California. * All Rights Reserved. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice (including the next * paragraph) shall be included in all copies or substantial portions of the * Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * PRECISION INSIGHT AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM, DAMAGES OR * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER * DEALINGS IN THE SOFTWARE. * * Authors: * Gareth Hughes */ #include "r128.h" #include "drmP.h" #include "drm.h" #include "r128_drm.h" #include "r128_drv.h" #define R128_FIFO_DEBUG 0 /* CCE microcode (from ATI) */ static u32 r128_cce_microcode[] = { 0, 276838400, 0, 268449792, 2, 142, 2, 145, 0, 1076765731, 0, 1617039951, 0, 774592877, 0, 1987540286, 0, 2307490946U, 0, 599558925, 0, 589505315, 0, 596487092, 0, 589505315, 1, 11544576, 1, 206848, 1, 311296, 1, 198656, 2, 912273422, 11, 262144, 0, 0, 1, 33559837, 1, 7438, 1, 14809, 1, 6615, 12, 28, 1, 6614, 12, 28, 2, 23, 11, 18874368, 0, 16790922, 1, 409600, 9, 30, 1, 147854772, 16, 420483072, 3, 8192, 0, 10240, 1, 198656, 1, 15630, 1, 51200, 10, 34858, 9, 42, 1, 33559823, 2, 10276, 1, 15717, 1, 15718, 2, 43, 1, 15936948, 1, 570480831, 1, 14715071, 12, 322123831, 1, 33953125, 12, 55, 1, 33559908, 1, 15718, 2, 46, 4, 2099258, 1, 526336, 1, 442623, 4, 4194365, 1, 509952, 1, 459007, 3, 0, 12, 92, 2, 46, 12, 176, 1, 15734, 1, 206848, 1, 18432, 1, 133120, 1, 100670734, 1, 149504, 1, 165888, 1, 15975928, 1, 1048576, 6, 3145806, 1, 15715, 16, 2150645232U, 2, 268449859, 2, 10307, 12, 176, 1, 15734, 1, 15735, 1, 15630, 1, 15631, 1, 5253120, 6, 3145810, 16, 2150645232U, 1, 15864, 2, 82, 1, 343310, 1, 1064207, 2, 3145813, 1, 15728, 1, 7817, 1, 15729, 3, 15730, 12, 92, 2, 98, 1, 16168, 1, 16167, 1, 16002, 1, 16008, 1, 15974, 1, 15975, 1, 15990, 1, 15976, 1, 15977, 1, 15980, 0, 15981, 1, 10240, 1, 5253120, 1, 15720, 1, 198656, 6, 110, 1, 180224, 1, 103824738, 2, 112, 2, 3145839, 0, 536885440, 1, 114880, 14, 125, 12, 206975, 1, 33559995, 12, 198784, 0, 33570236, 1, 15803, 0, 15804, 3, 294912, 1, 294912, 3, 442370, 1, 11544576, 0, 811612160, 1, 12593152, 1, 11536384, 1, 14024704, 7, 310382726, 0, 10240, 1, 14796, 1, 14797, 1, 14793, 1, 14794, 0, 14795, 1, 268679168, 1, 9437184, 1, 268449792, 1, 198656, 1, 9452827, 1, 1075854602, 1, 1075854603, 1, 557056, 1, 114880, 14, 159, 12, 198784, 1, 1109409213, 12, 198783, 1, 1107312059, 12, 198784, 1, 1109409212, 2, 162, 1, 1075854781, 1, 1073757627, 1, 1075854780, 1, 540672, 1, 10485760, 6, 3145894, 16, 274741248, 9, 168, 3, 4194304, 3, 4209949, 0, 0, 0, 256, 14, 174, 1, 114857, 1, 33560007, 12, 176, 0, 10240, 1, 114858, 1, 33560018, 1, 114857, 3, 33560007, 1, 16008, 1, 114874, 1, 33560360, 1, 114875, 1, 33560154, 0, 15963, 0, 256, 0, 4096, 1, 409611, 9, 188, 0, 10240, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 }; int r128_do_wait_for_idle( drm_r128_private_t *dev_priv ); int R128_READ_PLL(drm_device_t *dev, int addr) { drm_r128_private_t *dev_priv = dev->dev_private; R128_WRITE8(R128_CLOCK_CNTL_INDEX, addr & 0x1f); return R128_READ(R128_CLOCK_CNTL_DATA); } #if R128_FIFO_DEBUG static void r128_status( drm_r128_private_t *dev_priv ) { printk( "GUI_STAT = 0x%08x\n", (unsigned int)R128_READ( R128_GUI_STAT ) ); printk( "PM4_STAT = 0x%08x\n", (unsigned int)R128_READ( R128_PM4_STAT ) ); printk( "PM4_BUFFER_DL_WPTR = 0x%08x\n", (unsigned int)R128_READ( R128_PM4_BUFFER_DL_WPTR ) ); printk( "PM4_BUFFER_DL_RPTR = 0x%08x\n", (unsigned int)R128_READ( R128_PM4_BUFFER_DL_RPTR ) ); printk( "PM4_MICRO_CNTL = 0x%08x\n", (unsigned int)R128_READ( R128_PM4_MICRO_CNTL ) ); printk( "PM4_BUFFER_CNTL = 0x%08x\n", (unsigned int)R128_READ( R128_PM4_BUFFER_CNTL ) ); } #endif /* ================================================================ * Engine, FIFO control */ static int r128_do_pixcache_flush( drm_r128_private_t *dev_priv ) { u32 tmp; int i; tmp = R128_READ( R128_PC_NGUI_CTLSTAT ) | R128_PC_FLUSH_ALL; R128_WRITE( R128_PC_NGUI_CTLSTAT, tmp ); for ( i = 0 ; i < dev_priv->usec_timeout ; i++ ) { if ( !(R128_READ( R128_PC_NGUI_CTLSTAT ) & R128_PC_BUSY) ) { return 0; } DRM_UDELAY( 1 ); } #if R128_FIFO_DEBUG DRM_ERROR( "failed!\n" ); #endif return DRM_ERR(EBUSY); } static int r128_do_wait_for_fifo( drm_r128_private_t *dev_priv, int entries ) { int i; for ( i = 0 ; i < dev_priv->usec_timeout ; i++ ) { int slots = R128_READ( R128_GUI_STAT ) & R128_GUI_FIFOCNT_MASK; if ( slots >= entries ) return 0; DRM_UDELAY( 1 ); } #if R128_FIFO_DEBUG DRM_ERROR( "failed!\n" ); #endif return DRM_ERR(EBUSY); } int r128_do_wait_for_idle( drm_r128_private_t *dev_priv ) { int i, ret; ret = r128_do_wait_for_fifo( dev_priv, 64 ); if ( ret ) return ret; for ( i = 0 ; i < dev_priv->usec_timeout ; i++ ) { if ( !(R128_READ( R128_GUI_STAT ) & R128_GUI_ACTIVE) ) { r128_do_pixcache_flush( dev_priv ); return 0; } DRM_UDELAY( 1 ); } #if R128_FIFO_DEBUG DRM_ERROR( "failed!\n" ); #endif return DRM_ERR(EBUSY); } /* ================================================================ * CCE control, initialization */ /* Load the microcode for the CCE */ static void r128_cce_load_microcode( drm_r128_private_t *dev_priv ) { int i; DRM_DEBUG( "\n" ); r128_do_wait_for_idle( dev_priv ); R128_WRITE( R128_PM4_MICROCODE_ADDR, 0 ); for ( i = 0 ; i < 256 ; i++ ) { R128_WRITE( R128_PM4_MICROCODE_DATAH, r128_cce_microcode[i * 2] ); R128_WRITE( R128_PM4_MICROCODE_DATAL, r128_cce_microcode[i * 2 + 1] ); } } /* Flush any pending commands to the CCE. This should only be used just * prior to a wait for idle, as it informs the engine that the command * stream is ending. */ static void r128_do_cce_flush( drm_r128_private_t *dev_priv ) { u32 tmp; tmp = R128_READ( R128_PM4_BUFFER_DL_WPTR ) | R128_PM4_BUFFER_DL_DONE; R128_WRITE( R128_PM4_BUFFER_DL_WPTR, tmp ); } /* Wait for the CCE to go idle. */ int r128_do_cce_idle( drm_r128_private_t *dev_priv ) { int i; for ( i = 0 ; i < dev_priv->usec_timeout ; i++ ) { if ( GET_RING_HEAD( &dev_priv->ring ) == dev_priv->ring.tail ) { int pm4stat = R128_READ( R128_PM4_STAT ); if ( ( (pm4stat & R128_PM4_FIFOCNT_MASK) >= dev_priv->cce_fifo_size ) && !(pm4stat & (R128_PM4_BUSY | R128_PM4_GUI_ACTIVE)) ) { return r128_do_pixcache_flush( dev_priv ); } } DRM_UDELAY( 1 ); } #if R128_FIFO_DEBUG DRM_ERROR( "failed!\n" ); r128_status( dev_priv ); #endif return DRM_ERR(EBUSY); } /* Start the Concurrent Command Engine. */ static void r128_do_cce_start( drm_r128_private_t *dev_priv ) { r128_do_wait_for_idle( dev_priv ); R128_WRITE( R128_PM4_BUFFER_CNTL, dev_priv->cce_mode | dev_priv->ring.size_l2qw ); R128_READ( R128_PM4_BUFFER_ADDR ); /* as per the sample code */ R128_WRITE( R128_PM4_MICRO_CNTL, R128_PM4_MICRO_FREERUN ); dev_priv->cce_running = 1; } /* Reset the Concurrent Command Engine. This will not flush any pending * commands, so you must wait for the CCE command stream to complete * before calling this routine. */ static void r128_do_cce_reset( drm_r128_private_t *dev_priv ) { R128_WRITE( R128_PM4_BUFFER_DL_WPTR, 0 ); R128_WRITE( R128_PM4_BUFFER_DL_RPTR, 0 ); SET_RING_HEAD( &dev_priv->ring, 0 ); dev_priv->ring.tail = 0; } /* Stop the Concurrent Command Engine. This will not flush any pending * commands, so you must flush the command stream and wait for the CCE * to go idle before calling this routine. */ static void r128_do_cce_stop( drm_r128_private_t *dev_priv ) { R128_WRITE( R128_PM4_MICRO_CNTL, 0 ); R128_WRITE( R128_PM4_BUFFER_CNTL, R128_PM4_NONPM4 ); dev_priv->cce_running = 0; } /* Reset the engine. This will stop the CCE if it is running. */ static int r128_do_engine_reset( drm_device_t *dev ) { drm_r128_private_t *dev_priv = dev->dev_private; u32 clock_cntl_index, mclk_cntl, gen_reset_cntl; r128_do_pixcache_flush( dev_priv ); clock_cntl_index = R128_READ( R128_CLOCK_CNTL_INDEX ); mclk_cntl = R128_READ_PLL( dev, R128_MCLK_CNTL ); R128_WRITE_PLL( R128_MCLK_CNTL, mclk_cntl | R128_FORCE_GCP | R128_FORCE_PIPE3D_CP ); gen_reset_cntl = R128_READ( R128_GEN_RESET_CNTL ); /* Taken from the sample code - do not change */ R128_WRITE( R128_GEN_RESET_CNTL, gen_reset_cntl | R128_SOFT_RESET_GUI ); R128_READ( R128_GEN_RESET_CNTL ); R128_WRITE( R128_GEN_RESET_CNTL, gen_reset_cntl & ~R128_SOFT_RESET_GUI ); R128_READ( R128_GEN_RESET_CNTL ); R128_WRITE_PLL( R128_MCLK_CNTL, mclk_cntl ); R128_WRITE( R128_CLOCK_CNTL_INDEX, clock_cntl_index ); R128_WRITE( R128_GEN_RESET_CNTL, gen_reset_cntl ); /* Reset the CCE ring */ r128_do_cce_reset( dev_priv ); /* The CCE is no longer running after an engine reset */ dev_priv->cce_running = 0; /* Reset any pending vertex, indirect buffers */ r128_freelist_reset( dev ); return 0; } static void r128_cce_init_ring_buffer( drm_device_t *dev, drm_r128_private_t *dev_priv ) { u32 ring_start; u32 tmp; DRM_DEBUG( "\n" ); /* The manual (p. 2) says this address is in "VM space". This * means it's an offset from the start of AGP space. */ #if __REALLY_HAVE_AGP if ( !dev_priv->is_pci ) ring_start = dev_priv->cce_ring->offset - dev->agp->base; else #endif ring_start = dev_priv->cce_ring->offset - dev->sg->handle; R128_WRITE( R128_PM4_BUFFER_OFFSET, ring_start | R128_AGP_OFFSET ); R128_WRITE( R128_PM4_BUFFER_DL_WPTR, 0 ); R128_WRITE( R128_PM4_BUFFER_DL_RPTR, 0 ); /* DL_RPTR_ADDR is a physical address in AGP space. */ SET_RING_HEAD( &dev_priv->ring, 0 ); if ( !dev_priv->is_pci ) { R128_WRITE( R128_PM4_BUFFER_DL_RPTR_ADDR, dev_priv->ring_rptr->offset ); } else { drm_sg_mem_t *entry = dev->sg; unsigned long tmp_ofs, page_ofs; tmp_ofs = dev_priv->ring_rptr->offset - dev->sg->handle; page_ofs = tmp_ofs >> PAGE_SHIFT; R128_WRITE( R128_PM4_BUFFER_DL_RPTR_ADDR, entry->busaddr[page_ofs]); DRM_DEBUG( "ring rptr: offset=0x%08x handle=0x%08lx\n", entry->busaddr[page_ofs], entry->handle + tmp_ofs ); } /* Set watermark control */ R128_WRITE( R128_PM4_BUFFER_WM_CNTL, ((R128_WATERMARK_L/4) << R128_WMA_SHIFT) | ((R128_WATERMARK_M/4) << R128_WMB_SHIFT) | ((R128_WATERMARK_N/4) << R128_WMC_SHIFT) | ((R128_WATERMARK_K/64) << R128_WB_WM_SHIFT) ); /* Force read. Why? Because it's in the examples... */ R128_READ( R128_PM4_BUFFER_ADDR ); /* Turn on bus mastering */ tmp = R128_READ( R128_BUS_CNTL ) & ~R128_BUS_MASTER_DIS; R128_WRITE( R128_BUS_CNTL, tmp ); } static int r128_do_init_cce( drm_device_t *dev, drm_r128_init_t *init ) { drm_r128_private_t *dev_priv; DRM_DEBUG( "\n" ); dev_priv = DRM(alloc)( sizeof(drm_r128_private_t), DRM_MEM_DRIVER ); if ( dev_priv == NULL ) return DRM_ERR(ENOMEM); memset( dev_priv, 0, sizeof(drm_r128_private_t) ); dev_priv->is_pci = init->is_pci; if ( dev_priv->is_pci && !dev->sg ) { DRM_ERROR( "PCI GART memory not allocated!\n" ); dev->dev_private = (void *)dev_priv; r128_do_cleanup_cce( dev ); return DRM_ERR(EINVAL); } dev_priv->usec_timeout = init->usec_timeout; if ( dev_priv->usec_timeout < 1 || dev_priv->usec_timeout > R128_MAX_USEC_TIMEOUT ) { DRM_DEBUG( "TIMEOUT problem!\n" ); dev->dev_private = (void *)dev_priv; r128_do_cleanup_cce( dev ); return DRM_ERR(EINVAL); } dev_priv->cce_mode = init->cce_mode; /* GH: Simple idle check. */ atomic_set( &dev_priv->idle_count, 0 ); /* We don't support anything other than bus-mastering ring mode, * but the ring can be in either AGP or PCI space for the ring * read pointer. */ if ( ( init->cce_mode != R128_PM4_192BM ) && ( init->cce_mode != R128_PM4_128BM_64INDBM ) && ( init->cce_mode != R128_PM4_64BM_128INDBM ) && ( init->cce_mode != R128_PM4_64BM_64VCBM_64INDBM ) ) { DRM_DEBUG( "Bad cce_mode!\n" ); dev->dev_private = (void *)dev_priv; r128_do_cleanup_cce( dev ); return DRM_ERR(EINVAL); } switch ( init->cce_mode ) { case R128_PM4_NONPM4: dev_priv->cce_fifo_size = 0; break; case R128_PM4_192PIO: case R128_PM4_192BM: dev_priv->cce_fifo_size = 192; break; case R128_PM4_128PIO_64INDBM: case R128_PM4_128BM_64INDBM: dev_priv->cce_fifo_size = 128; break; case R128_PM4_64PIO_128INDBM: case R128_PM4_64BM_128INDBM: case R128_PM4_64PIO_64VCBM_64INDBM: case R128_PM4_64BM_64VCBM_64INDBM: case R128_PM4_64PIO_64VCPIO_64INDPIO: dev_priv->cce_fifo_size = 64; break; } switch ( init->fb_bpp ) { case 16: dev_priv->color_fmt = R128_DATATYPE_RGB565; break; case 32: default: dev_priv->color_fmt = R128_DATATYPE_ARGB8888; break; } dev_priv->front_offset = init->front_offset; dev_priv->front_pitch = init->front_pitch; dev_priv->back_offset = init->back_offset; dev_priv->back_pitch = init->back_pitch; switch ( init->depth_bpp ) { case 16: dev_priv->depth_fmt = R128_DATATYPE_RGB565; break; case 24: case 32: default: dev_priv->depth_fmt = R128_DATATYPE_ARGB8888; break; } dev_priv->depth_offset = init->depth_offset; dev_priv->depth_pitch = init->depth_pitch; dev_priv->span_offset = init->span_offset; dev_priv->front_pitch_offset_c = (((dev_priv->front_pitch/8) << 21) | (dev_priv->front_offset >> 5)); dev_priv->back_pitch_offset_c = (((dev_priv->back_pitch/8) << 21) | (dev_priv->back_offset >> 5)); dev_priv->depth_pitch_offset_c = (((dev_priv->depth_pitch/8) << 21) | (dev_priv->depth_offset >> 5) | R128_DST_TILE); dev_priv->span_pitch_offset_c = (((dev_priv->depth_pitch/8) << 21) | (dev_priv->span_offset >> 5)); DRM_GETSAREA(); if(!dev_priv->sarea) { DRM_ERROR("could not find sarea!\n"); dev->dev_private = (void *)dev_priv; r128_do_cleanup_cce( dev ); return DRM_ERR(EINVAL); } DRM_FIND_MAP( dev_priv->fb, init->fb_offset ); if(!dev_priv->fb) { DRM_ERROR("could not find framebuffer!\n"); dev->dev_private = (void *)dev_priv; r128_do_cleanup_cce( dev ); return DRM_ERR(EINVAL); } DRM_FIND_MAP( dev_priv->mmio, init->mmio_offset ); if(!dev_priv->mmio) { DRM_ERROR("could not find mmio region!\n"); dev->dev_private = (void *)dev_priv; r128_do_cleanup_cce( dev ); return DRM_ERR(EINVAL); } DRM_FIND_MAP( dev_priv->cce_ring, init->ring_offset ); if(!dev_priv->cce_ring) { DRM_ERROR("could not find cce ring region!\n"); dev->dev_private = (void *)dev_priv; r128_do_cleanup_cce( dev ); return DRM_ERR(EINVAL); } DRM_FIND_MAP( dev_priv->ring_rptr, init->ring_rptr_offset ); if(!dev_priv->ring_rptr) { DRM_ERROR("could not find ring read pointer!\n"); dev->dev_private = (void *)dev_priv; r128_do_cleanup_cce( dev ); return DRM_ERR(EINVAL); } DRM_FIND_MAP( dev_priv->buffers, init->buffers_offset ); if(!dev_priv->buffers) { DRM_ERROR("could not find dma buffer region!\n"); dev->dev_private = (void *)dev_priv; r128_do_cleanup_cce( dev ); return DRM_ERR(EINVAL); } if ( !dev_priv->is_pci ) { DRM_FIND_MAP( dev_priv->agp_textures, init->agp_textures_offset ); if(!dev_priv->agp_textures) { DRM_ERROR("could not find agp texture region!\n"); dev->dev_private = (void *)dev_priv; r128_do_cleanup_cce( dev ); return DRM_ERR(EINVAL); } } dev_priv->sarea_priv = (drm_r128_sarea_t *)((u8 *)dev_priv->sarea->handle + init->sarea_priv_offset); if ( !dev_priv->is_pci ) { DRM_IOREMAP( dev_priv->cce_ring ); DRM_IOREMAP( dev_priv->ring_rptr ); DRM_IOREMAP( dev_priv->buffers ); if(!dev_priv->cce_ring->handle || !dev_priv->ring_rptr->handle || !dev_priv->buffers->handle) { DRM_ERROR("Could not ioremap agp regions!\n"); dev->dev_private = (void *)dev_priv; r128_do_cleanup_cce( dev ); return DRM_ERR(ENOMEM); } } else { dev_priv->cce_ring->handle = (void *)dev_priv->cce_ring->offset; dev_priv->ring_rptr->handle = (void *)dev_priv->ring_rptr->offset; dev_priv->buffers->handle = (void *)dev_priv->buffers->offset; } #if __REALLY_HAVE_AGP if ( !dev_priv->is_pci ) dev_priv->cce_buffers_offset = dev->agp->base; else #endif dev_priv->cce_buffers_offset = dev->sg->handle; dev_priv->ring.head = ((__volatile__ u32 *) dev_priv->ring_rptr->handle); dev_priv->ring.start = (u32 *)dev_priv->cce_ring->handle; dev_priv->ring.end = ((u32 *)dev_priv->cce_ring->handle + init->ring_size / sizeof(u32)); dev_priv->ring.size = init->ring_size; dev_priv->ring.size_l2qw = DRM(order)( init->ring_size / 8 ); dev_priv->ring.tail_mask = (dev_priv->ring.size / sizeof(u32)) - 1; dev_priv->ring.high_mark = 128; dev_priv->ring.ring_rptr = dev_priv->ring_rptr; dev_priv->sarea_priv->last_frame = 0; R128_WRITE( R128_LAST_FRAME_REG, dev_priv->sarea_priv->last_frame ); dev_priv->sarea_priv->last_dispatch = 0; R128_WRITE( R128_LAST_DISPATCH_REG, dev_priv->sarea_priv->last_dispatch ); #if __REALLY_HAVE_SG if ( dev_priv->is_pci ) { if (!DRM(ati_pcigart_init)( dev, &dev_priv->phys_pci_gart, &dev_priv->bus_pci_gart) ) { DRM_ERROR( "failed to init PCI GART!\n" ); dev->dev_private = (void *)dev_priv; r128_do_cleanup_cce( dev ); return DRM_ERR(ENOMEM); } R128_WRITE( R128_PCI_GART_PAGE, dev_priv->bus_pci_gart ); } #endif r128_cce_init_ring_buffer( dev, dev_priv ); r128_cce_load_microcode( dev_priv ); dev->dev_private = (void *)dev_priv; r128_do_engine_reset( dev ); return 0; } int r128_do_cleanup_cce( drm_device_t *dev ) { if ( dev->dev_private ) { drm_r128_private_t *dev_priv = dev->dev_private; #if __REALLY_HAVE_SG if ( !dev_priv->is_pci ) { #endif if ( dev_priv->cce_ring != NULL ) DRM_IOREMAPFREE( dev_priv->cce_ring ); if ( dev_priv->ring_rptr != NULL ) DRM_IOREMAPFREE( dev_priv->ring_rptr ); if ( dev_priv->buffers != NULL ) DRM_IOREMAPFREE( dev_priv->buffers ); #if __REALLY_HAVE_SG } else { if (!DRM(ati_pcigart_cleanup)( dev, dev_priv->phys_pci_gart, dev_priv->bus_pci_gart )) DRM_ERROR( "failed to cleanup PCI GART!\n" ); } #endif DRM(free)( dev->dev_private, sizeof(drm_r128_private_t), DRM_MEM_DRIVER ); dev->dev_private = NULL; } return 0; } int r128_cce_init( DRM_IOCTL_ARGS ) { DRM_DEVICE; drm_r128_init_t init; DRM_DEBUG( "\n" ); DRM_COPY_FROM_USER_IOCTL( init, (drm_r128_init_t *)data, sizeof(init) ); switch ( init.func ) { case R128_INIT_CCE: return r128_do_init_cce( dev, &init ); case R128_CLEANUP_CCE: return r128_do_cleanup_cce( dev ); } return DRM_ERR(EINVAL); } int r128_cce_start( DRM_IOCTL_ARGS ) { DRM_DEVICE; drm_r128_private_t *dev_priv = dev->dev_private; DRM_DEBUG( "\n" ); LOCK_TEST_WITH_RETURN( dev, filp ); if ( dev_priv->cce_running || dev_priv->cce_mode == R128_PM4_NONPM4 ) { DRM_DEBUG( "%s while CCE running\n", __FUNCTION__ ); return 0; } r128_do_cce_start( dev_priv ); return 0; } /* Stop the CCE. The engine must have been idled before calling this * routine. */ int r128_cce_stop( DRM_IOCTL_ARGS ) { DRM_DEVICE; drm_r128_private_t *dev_priv = dev->dev_private; drm_r128_cce_stop_t stop; int ret; DRM_DEBUG( "\n" ); LOCK_TEST_WITH_RETURN( dev, filp ); DRM_COPY_FROM_USER_IOCTL(stop, (drm_r128_cce_stop_t *)data, sizeof(stop) ); /* Flush any pending CCE commands. This ensures any outstanding * commands are exectuted by the engine before we turn it off. */ if ( stop.flush ) { r128_do_cce_flush( dev_priv ); } /* If we fail to make the engine go idle, we return an error * code so that the DRM ioctl wrapper can try again. */ if ( stop.idle ) { ret = r128_do_cce_idle( dev_priv ); if ( ret ) return ret; } /* Finally, we can turn off the CCE. If the engine isn't idle, * we will get some dropped triangles as they won't be fully * rendered before the CCE is shut down. */ r128_do_cce_stop( dev_priv ); /* Reset the engine */ r128_do_engine_reset( dev ); return 0; } /* Just reset the CCE ring. Called as part of an X Server engine reset. */ int r128_cce_reset( DRM_IOCTL_ARGS ) { DRM_DEVICE; drm_r128_private_t *dev_priv = dev->dev_private; DRM_DEBUG( "\n" ); LOCK_TEST_WITH_RETURN( dev, filp ); if ( !dev_priv ) { DRM_DEBUG( "%s called before init done\n", __FUNCTION__ ); return DRM_ERR(EINVAL); } r128_do_cce_reset( dev_priv ); /* The CCE is no longer running after an engine reset */ dev_priv->cce_running = 0; return 0; } int r128_cce_idle( DRM_IOCTL_ARGS ) { DRM_DEVICE; drm_r128_private_t *dev_priv = dev->dev_private; DRM_DEBUG( "\n" ); LOCK_TEST_WITH_RETURN( dev, filp ); if ( dev_priv->cce_running ) { r128_do_cce_flush( dev_priv ); } return r128_do_cce_idle( dev_priv ); } int r128_engine_reset( DRM_IOCTL_ARGS ) { DRM_DEVICE; DRM_DEBUG( "\n" ); LOCK_TEST_WITH_RETURN( dev, filp ); return r128_do_engine_reset( dev ); } /* ================================================================ * Fullscreen mode */ static int r128_do_init_pageflip( drm_device_t *dev ) { drm_r128_private_t *dev_priv = dev->dev_private; DRM_DEBUG( "\n" ); dev_priv->crtc_offset = R128_READ( R128_CRTC_OFFSET ); dev_priv->crtc_offset_cntl = R128_READ( R128_CRTC_OFFSET_CNTL ); R128_WRITE( R128_CRTC_OFFSET, dev_priv->front_offset ); R128_WRITE( R128_CRTC_OFFSET_CNTL, dev_priv->crtc_offset_cntl | R128_CRTC_OFFSET_FLIP_CNTL ); dev_priv->page_flipping = 1; dev_priv->current_page = 0; return 0; } int r128_do_cleanup_pageflip( drm_device_t *dev ) { drm_r128_private_t *dev_priv = dev->dev_private; DRM_DEBUG( "\n" ); R128_WRITE( R128_CRTC_OFFSET, dev_priv->crtc_offset ); R128_WRITE( R128_CRTC_OFFSET_CNTL, dev_priv->crtc_offset_cntl ); dev_priv->page_flipping = 0; dev_priv->current_page = 0; return 0; } int r128_fullscreen( DRM_IOCTL_ARGS ) { DRM_DEVICE; drm_r128_fullscreen_t fs; LOCK_TEST_WITH_RETURN( dev, filp ); DRM_COPY_FROM_USER_IOCTL( fs, (drm_r128_fullscreen_t *)data, sizeof(fs) ); switch ( fs.func ) { case R128_INIT_FULLSCREEN: return r128_do_init_pageflip( dev ); case R128_CLEANUP_FULLSCREEN: return r128_do_cleanup_pageflip( dev ); } return DRM_ERR(EINVAL); } /* ================================================================ * Freelist management */ #define R128_BUFFER_USED 0xffffffff #define R128_BUFFER_FREE 0 #if 0 static int r128_freelist_init( drm_device_t *dev ) { drm_device_dma_t *dma = dev->dma; drm_r128_private_t *dev_priv = dev->dev_private; drm_buf_t *buf; drm_r128_buf_priv_t *buf_priv; drm_r128_freelist_t *entry; int i; dev_priv->head = DRM(alloc)( sizeof(drm_r128_freelist_t), DRM_MEM_DRIVER ); if ( dev_priv->head == NULL ) return DRM_ERR(ENOMEM); memset( dev_priv->head, 0, sizeof(drm_r128_freelist_t) ); dev_priv->head->age = R128_BUFFER_USED; for ( i = 0 ; i < dma->buf_count ; i++ ) { buf = dma->buflist[i]; buf_priv = buf->dev_private; entry = DRM(alloc)( sizeof(drm_r128_freelist_t), DRM_MEM_DRIVER ); if ( !entry ) return DRM_ERR(ENOMEM); entry->age = R128_BUFFER_FREE; entry->buf = buf; entry->prev = dev_priv->head; entry->next = dev_priv->head->next; if ( !entry->next ) dev_priv->tail = entry; buf_priv->discard = 0; buf_priv->dispatched = 0; buf_priv->list_entry = entry; dev_priv->head->next = entry; if ( dev_priv->head->next ) dev_priv->head->next->prev = entry; } return 0; } #endif drm_buf_t *r128_freelist_get( drm_device_t *dev ) { drm_device_dma_t *dma = dev->dma; drm_r128_private_t *dev_priv = dev->dev_private; drm_r128_buf_priv_t *buf_priv; drm_buf_t *buf; int i, t; /* FIXME: Optimize -- use freelist code */ for ( i = 0 ; i < dma->buf_count ; i++ ) { buf = dma->buflist[i]; buf_priv = buf->dev_private; if ( buf->filp == 0 ) return buf; } for ( t = 0 ; t < dev_priv->usec_timeout ; t++ ) { u32 done_age = R128_READ( R128_LAST_DISPATCH_REG ); for ( i = 0 ; i < dma->buf_count ; i++ ) { buf = dma->buflist[i]; buf_priv = buf->dev_private; if ( buf->pending && buf_priv->age <= done_age ) { /* The buffer has been processed, so it * can now be used. */ buf->pending = 0; return buf; } } DRM_UDELAY( 1 ); } DRM_ERROR( "returning NULL!\n" ); return NULL; } void r128_freelist_reset( drm_device_t *dev ) { drm_device_dma_t *dma = dev->dma; int i; for ( i = 0 ; i < dma->buf_count ; i++ ) { drm_buf_t *buf = dma->buflist[i]; drm_r128_buf_priv_t *buf_priv = buf->dev_private; buf_priv->age = 0; } } /* ================================================================ * CCE command submission */ int r128_wait_ring( drm_r128_private_t *dev_priv, int n ) { drm_r128_ring_buffer_t *ring = &dev_priv->ring; int i; for ( i = 0 ; i < dev_priv->usec_timeout ; i++ ) { r128_update_ring_snapshot( ring ); if ( ring->space >= n ) return 0; DRM_UDELAY( 1 ); } /* FIXME: This is being ignored... */ DRM_ERROR( "failed!\n" ); return DRM_ERR(EBUSY); } static int r128_cce_get_buffers( DRMFILE filp, drm_device_t *dev, drm_dma_t *d ) { int i; drm_buf_t *buf; for ( i = d->granted_count ; i < d->request_count ; i++ ) { buf = r128_freelist_get( dev ); if ( !buf ) return DRM_ERR(EAGAIN); buf->filp = filp; if ( DRM_COPY_TO_USER( &d->request_indices[i], &buf->idx, sizeof(buf->idx) ) ) return DRM_ERR(EFAULT); if ( DRM_COPY_TO_USER( &d->request_sizes[i], &buf->total, sizeof(buf->total) ) ) return DRM_ERR(EFAULT); d->granted_count++; } return 0; } int r128_cce_buffers( DRM_IOCTL_ARGS ) { DRM_DEVICE; drm_device_dma_t *dma = dev->dma; int ret = 0; drm_dma_t d; LOCK_TEST_WITH_RETURN( dev, filp ); DRM_COPY_FROM_USER_IOCTL( d, (drm_dma_t *) data, sizeof(d) ); /* Please don't send us buffers. */ if ( d.send_count != 0 ) { DRM_ERROR( "Process %d trying to send %d buffers via drmDMA\n", DRM_CURRENTPID, d.send_count ); return DRM_ERR(EINVAL); } /* We'll send you buffers. */ if ( d.request_count < 0 || d.request_count > dma->buf_count ) { DRM_ERROR( "Process %d trying to get %d buffers (of %d max)\n", DRM_CURRENTPID, d.request_count, dma->buf_count ); return DRM_ERR(EINVAL); } d.granted_count = 0; if ( d.request_count ) { ret = r128_cce_get_buffers( filp, dev, &d ); } DRM_COPY_TO_USER_IOCTL((drm_dma_t *) data, d, sizeof(d) ); return ret; } href='#n737'>737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171
/*
 * Copyright (C) 2006 Ben Skeggs.
 *
 * All Rights Reserved.
 *
 * Permission is hereby granted, free of charge, to any person obtaining
 * a copy of this software and associated documentation files (the
 * "Software"), to deal in the Software without restriction, including
 * without limitation the rights to use, copy, modify, merge, publish,
 * distribute, sublicense, and/or sell copies of the Software, and to
 * permit persons to whom the Software is furnished to do so, subject to
 * the following conditions:
 *
 * The above copyright notice and this permission notice (including the
 * next paragraph) shall be included in all copies or substantial
 * portions of the Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
 * IN NO EVENT SHALL THE COPYRIGHT OWNER(S) AND/OR ITS SUPPLIERS BE
 * LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
 * OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
 * WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
 *
 */

/*
 * Authors:
 *   Ben Skeggs <darktama@iinet.net.au>
 */

#include "drmP.h"
#include "drm.h"
#include "nouveau_drv.h"
#include "nouveau_drm.h"

/* NVidia uses context objects to drive drawing operations.

   Context objects can be selected into 8 subchannels in the FIFO,
   and then used via DMA command buffers.

   A context object is referenced by a user defined handle (CARD32). The HW
   looks up graphics objects in a hash table in the instance RAM.

   An entry in the hash table consists of 2 CARD32. The first CARD32 contains
   the handle, the second one a bitfield, that contains the address of the
   object in instance RAM.

   The format of the second CARD32 seems to be:

   NV4 to NV30:

   15: 0  instance_addr >> 4
   17:16  engine (here uses 1 = graphics)
   28:24  channel id (here uses 0)
   31	  valid (use 1)

   NV40:

   15: 0  instance_addr >> 4   (maybe 19-0)
   21:20  engine (here uses 1 = graphics)
   I'm unsure about the other bits, but using 0 seems to work.

   The key into the hash table depends on the object handle and channel id and
   is given as:
*/
static uint32_t
nouveau_ramht_hash_handle(struct drm_device *dev, int channel, uint32_t handle)
{
	struct drm_nouveau_private *dev_priv=dev->dev_private;
	uint32_t hash = 0;
	int i;

	DRM_DEBUG("ch%d handle=0x%08x\n", channel, handle);

	for (i=32;i>0;i-=dev_priv->ramht_bits) {
		hash ^= (handle & ((1 << dev_priv->ramht_bits) - 1));
		handle >>= dev_priv->ramht_bits;
	}
	if (dev_priv->card_type < NV_50)
		hash ^= channel << (dev_priv->ramht_bits - 4);
	hash <<= 3;

	DRM_DEBUG("hash=0x%08x\n", hash);
	return hash;
}

static int
nouveau_ramht_entry_valid(struct drm_device *dev, struct nouveau_gpuobj *ramht,
			  uint32_t offset)
{
	struct drm_nouveau_private *dev_priv=dev->dev_private;
	uint32_t ctx = INSTANCE_RD(ramht, (offset + 4)/4);

	if (dev_priv->card_type < NV_40)
		return ((ctx & NV_RAMHT_CONTEXT_VALID) != 0);
	return (ctx != 0);
}

static int
nouveau_ramht_insert(struct drm_device *dev, struct nouveau_gpuobj_ref *ref)
{
	struct drm_nouveau_private *dev_priv=dev->dev_private;
	struct nouveau_channel *chan = dev_priv->fifos[ref->channel];
	struct nouveau_gpuobj *ramht = chan->ramht ? chan->ramht->gpuobj : NULL;
	struct nouveau_gpuobj *gpuobj = ref->gpuobj;
	uint32_t ctx, co, ho;

	if (!ramht) {
		DRM_ERROR("No hash table!\n");
		return -EINVAL;
	}

	if (dev_priv->card_type < NV_40) {
		ctx = NV_RAMHT_CONTEXT_VALID | (ref->instance >> 4) |
		      (ref->channel   << NV_RAMHT_CONTEXT_CHANNEL_SHIFT) |
		      (gpuobj->engine << NV_RAMHT_CONTEXT_ENGINE_SHIFT);
	} else
	if (dev_priv->card_type < NV_50) {
		ctx = (ref->instance >> 4) |
		      (ref->channel   << NV40_RAMHT_CONTEXT_CHANNEL_SHIFT) |
		      (gpuobj->engine << NV40_RAMHT_CONTEXT_ENGINE_SHIFT);
	} else {
		ctx = (ref->instance  >> 4) |
		      (gpuobj->engine << NV40_RAMHT_CONTEXT_ENGINE_SHIFT);
	}

	co = ho = nouveau_ramht_hash_handle(dev, ref->channel, ref->handle);
	do {
		if (!nouveau_ramht_entry_valid(dev, ramht, co)) {
			DRM_DEBUG("insert ch%d 0x%08x: h=0x%08x, c=0x%08x\n",
				  ref->channel, co, ref->handle, ctx);
			INSTANCE_WR(ramht, (co + 0)/4, ref->handle);
			INSTANCE_WR(ramht, (co + 4)/4, ctx);

			list_add_tail(&ref->list, &chan->ramht_refs);
			return 0;
		}
		DRM_DEBUG("collision ch%d 0x%08x: h=0x%08x\n",
			  ref->channel, co, INSTANCE_RD(ramht, co/4));

		co += 8;
		if (co >= dev_priv->ramht_size) {
			DRM_INFO("no space left after collision\n");
			co = 0;
			/* exit as it seems to cause crash with nouveau_demo and
			 * 0xdead0001 object */
			break;
		}
	} while (co != ho);

	DRM_ERROR("RAMHT space exhausted. ch=%d\n", ref->channel);
	return -ENOMEM;
}

static void
nouveau_ramht_remove(struct drm_device *dev, struct nouveau_gpuobj_ref *ref)
{
	struct drm_nouveau_private *dev_priv = dev->dev_private;
	struct nouveau_channel *chan = dev_priv->fifos[ref->channel];
	struct nouveau_gpuobj *ramht = chan->ramht ? chan->ramht->gpuobj : NULL;
	uint32_t co, ho;

	if (!ramht) {
		DRM_ERROR("No hash table!\n");
		return;
	}

	co = ho = nouveau_ramht_hash_handle(dev, ref->channel, ref->handle);
	do {
		if (nouveau_ramht_entry_valid(dev, ramht, co) &&
		    (ref->handle == INSTANCE_RD(ramht, (co/4)))) {
			DRM_DEBUG("remove ch%d 0x%08x: h=0x%08x, c=0x%08x\n",
				  ref->channel, co, ref->handle,
				  INSTANCE_RD(ramht, (co + 4)));
			INSTANCE_WR(ramht, (co + 0)/4, 0x00000000);
			INSTANCE_WR(ramht, (co + 4)/4, 0x00000000);

			list_del(&ref->list);
			return;
		}

		co += 8;
		if (co >= dev_priv->ramht_size)
			co = 0;
	} while (co != ho);

	DRM_ERROR("RAMHT entry not found. ch=%d, handle=0x%08x\n",
		  ref->channel, ref->handle);
}

int
nouveau_gpuobj_new(struct drm_device *dev, struct nouveau_channel *chan,
		   int size, int align, uint32_t flags,
		   struct nouveau_gpuobj **gpuobj_ret)
{
	struct drm_nouveau_private *dev_priv = dev->dev_private;
	struct nouveau_engine *engine = &dev_priv->Engine;
	struct nouveau_gpuobj *gpuobj;
	struct mem_block *pramin = NULL;
	int ret;

	DRM_DEBUG("ch%d size=%d align=%d flags=0x%08x\n",
		  chan ? chan->id : -1, size, align, flags);

	if (!dev_priv || !gpuobj_ret || *gpuobj_ret != NULL)
		return -EINVAL;

	gpuobj = drm_calloc(1, sizeof(*gpuobj), DRM_MEM_DRIVER);
	if (!gpuobj)
		return -ENOMEM;
	DRM_DEBUG("gpuobj %p\n", gpuobj);
	gpuobj->flags = flags;
	gpuobj->im_channel = chan ? chan->id : -1;

	list_add_tail(&gpuobj->list, &dev_priv->gpuobj_list);

	/* Choose between global instmem heap, and per-channel private
	 * instmem heap.  On <NV50 allow requests for private instmem
	 * to be satisfied from global heap if no per-channel area
	 * available.
	 */
	if (chan) {
		if (chan->ramin_heap) {
			DRM_DEBUG("private heap\n");
			pramin = chan->ramin_heap;
		} else
		if (dev_priv->card_type < NV_50) {
			DRM_DEBUG("global heap fallback\n");
			pramin = dev_priv->ramin_heap;
		}
	} else {
		DRM_DEBUG("global heap\n");
		pramin = dev_priv->ramin_heap;
	}

	if (!pramin) {
		DRM_ERROR("No PRAMIN heap!\n");
		return -EINVAL;
	}

	if (!chan && (ret = engine->instmem.populate(dev, gpuobj, &size))) {
		nouveau_gpuobj_del(dev, &gpuobj);
		return ret;
	}

	/* Allocate a chunk of the PRAMIN aperture */
	gpuobj->im_pramin = nouveau_mem_alloc_block(pramin, size,
						    drm_order(align),
						    (struct drm_file *)-2, 0);
	if (!gpuobj->im_pramin) {
		nouveau_gpuobj_del(dev, &gpuobj);
		return -ENOMEM;
	}
	gpuobj->im_pramin->flags = NOUVEAU_MEM_INSTANCE;

	if (!chan && (ret = engine->instmem.bind(dev, gpuobj))) {
		nouveau_gpuobj_del(dev, &gpuobj);
		return ret;
	}

	if (gpuobj->flags & NVOBJ_FLAG_ZERO_ALLOC) {
		int i;

		for (i = 0; i < gpuobj->im_pramin->size; i += 4)
			INSTANCE_WR(gpuobj, i/4, 0);
	}

	*gpuobj_ret = gpuobj;
	return 0;
}

int
nouveau_gpuobj_early_init(struct drm_device *dev)
{
	struct drm_nouveau_private *dev_priv = dev->dev_private;

	DRM_DEBUG("\n");

	INIT_LIST_HEAD(&dev_priv->gpuobj_list);

	return 0;
}

int
nouveau_gpuobj_init(struct drm_device *dev)
{
	struct drm_nouveau_private *dev_priv = dev->dev_private;
	int ret;

	DRM_DEBUG("\n");

	if (dev_priv->card_type < NV_50) {
		if ((ret = nouveau_gpuobj_new_fake(dev, dev_priv->ramht_offset,
						   ~0, dev_priv->ramht_size,
						   NVOBJ_FLAG_ZERO_ALLOC |
						   NVOBJ_FLAG_ALLOW_NO_REFS,
						   &dev_priv->ramht, NULL)))
			return ret;
	}

	return 0;
}

void
nouveau_gpuobj_takedown(struct drm_device *dev)
{
	struct drm_nouveau_private *dev_priv = dev->dev_private;

	DRM_DEBUG("\n");

	nouveau_gpuobj_del(dev, &dev_priv->ramht);
}

void
nouveau_gpuobj_late_takedown(struct drm_device *dev)
{
	struct drm_nouveau_private *dev_priv = dev->dev_private;
	struct nouveau_gpuobj *gpuobj = NULL;
	struct list_head *entry, *tmp;

	DRM_DEBUG("\n");

	list_for_each_safe(entry, tmp, &dev_priv->gpuobj_list) {
		gpuobj = list_entry(entry, struct nouveau_gpuobj, list);

		DRM_ERROR("gpuobj %p still exists at takedown, refs=%d\n",
			  gpuobj, gpuobj->refcount);
		gpuobj->refcount = 0;
		nouveau_gpuobj_del(dev, &gpuobj);
	}
}

int
nouveau_gpuobj_del(struct drm_device *dev, struct nouveau_gpuobj **pgpuobj)
{
	struct drm_nouveau_private *dev_priv = dev->dev_private;
	struct nouveau_engine *engine = &dev_priv->Engine;
	struct nouveau_gpuobj *gpuobj;

	DRM_DEBUG("gpuobj %p\n", pgpuobj ? *pgpuobj : NULL);

	if (!dev_priv || !pgpuobj || !(*pgpuobj))
		return -EINVAL;
	gpuobj = *pgpuobj;

	if (gpuobj->refcount != 0) {
		DRM_ERROR("gpuobj refcount is %d\n", gpuobj->refcount);
		return -EINVAL;
	}

	if (gpuobj->dtor)
		gpuobj->dtor(dev, gpuobj);

	if (gpuobj->im_backing) {
		if (gpuobj->flags & NVOBJ_FLAG_FAKE)
			drm_free(gpuobj->im_backing,
				 sizeof(*gpuobj->im_backing), DRM_MEM_DRIVER);
		else
			engine->instmem.clear(dev, gpuobj);
	}

	if (gpuobj->im_pramin) {
		if (gpuobj->flags & NVOBJ_FLAG_FAKE)
			drm_free(gpuobj->im_pramin, sizeof(*gpuobj->im_pramin),
				 DRM_MEM_DRIVER);
		else
			nouveau_mem_free_block(gpuobj->im_pramin);
	}

	list_del(&gpuobj->list);

	*pgpuobj = NULL;
	drm_free(gpuobj, sizeof(*gpuobj), DRM_MEM_DRIVER);
	return 0;
}

static int
nouveau_gpuobj_instance_get(struct drm_device *dev,
			    struct nouveau_channel *chan,
			    struct nouveau_gpuobj *gpuobj, uint32_t *inst)
{
	struct drm_nouveau_private *dev_priv = dev->dev_private;
	struct nouveau_gpuobj *cpramin;

	/* <NV50 use PRAMIN address everywhere */
	if (dev_priv->card_type < NV_50) {
		*inst = gpuobj->im_pramin->start;
		return 0;
	}

	if (chan && gpuobj->im_channel != chan->id) {
		DRM_ERROR("Channel mismatch: obj %d, ref %d\n",
			  gpuobj->im_channel, chan->id);
		return -EINVAL;
	}

	/* NV50 channel-local instance */
	if (chan > 0) {
		cpramin = chan->ramin->gpuobj;
		*inst = gpuobj->im_pramin->start - cpramin->im_pramin->start;
		return 0;
	}

	/* NV50 global (VRAM) instance */
	if (gpuobj->im_channel < 0) {
		/* ...from global heap */
		if (!gpuobj->im_backing) {
			DRM_ERROR("AII, no VRAM backing gpuobj\n");
			return -EINVAL;
		}
		*inst = gpuobj->im_backing->start;
		return 0;
	} else {
		/* ...from local heap */
		cpramin = dev_priv->fifos[gpuobj->im_channel]->ramin->gpuobj;
		*inst = cpramin->im_backing->start +
			(gpuobj->im_pramin->start - cpramin->im_pramin->start);
		return 0;
	}

	return -EINVAL;
}

int
nouveau_gpuobj_ref_add(struct drm_device *dev, struct nouveau_channel *chan,
		       uint32_t handle, struct nouveau_gpuobj *gpuobj,
		       struct nouveau_gpuobj_ref **ref_ret)
{
	struct drm_nouveau_private *dev_priv = dev->dev_private;
	struct nouveau_gpuobj_ref *ref;
	uint32_t instance;
	int ret;

	DRM_DEBUG("ch%d h=0x%08x gpuobj=%p\n",
		  chan ? chan->id : -1, handle, gpuobj);

	if (!dev_priv || !gpuobj || (ref_ret && *ref_ret != NULL))
		return -EINVAL;

	if (!chan && !ref_ret)
		return -EINVAL;

	ret = nouveau_gpuobj_instance_get(dev, chan, gpuobj, &instance);
	if (ret)
		return ret;

	ref = drm_calloc(1, sizeof(*ref), DRM_MEM_DRIVER);
	if (!ref)
		return -ENOMEM;
	ref->gpuobj   = gpuobj;
	ref->channel  = chan ? chan->id : -1;
	ref->instance = instance;

	if (!ref_ret) {
		ref->handle = handle;

		ret = nouveau_ramht_insert(dev, ref);
		if (ret) {
			drm_free(ref, sizeof(*ref), DRM_MEM_DRIVER);
			return ret;
		}
	} else {
		ref->handle = ~0;
		*ref_ret = ref;
	}

	ref->gpuobj->refcount++;
	return 0;
}

int nouveau_gpuobj_ref_del(struct drm_device *dev, struct nouveau_gpuobj_ref **pref)
{
	struct nouveau_gpuobj_ref *ref;

	DRM_DEBUG("ref %p\n", pref ? *pref : NULL);

	if (!dev || !pref || *pref == NULL)
		return -EINVAL;
	ref = *pref;

	if (ref->handle != ~0)
		nouveau_ramht_remove(dev, ref);

	if (ref->gpuobj) {
		ref->gpuobj->refcount--;

		if (ref->gpuobj->refcount == 0) {
			if (!(ref->gpuobj->flags & NVOBJ_FLAG_ALLOW_NO_REFS))
				nouveau_gpuobj_del(dev, &ref->gpuobj);
		}
	}

	*pref = NULL;
	drm_free(ref, sizeof(ref), DRM_MEM_DRIVER);
	return 0;
}

int
nouveau_gpuobj_new_ref(struct drm_device *dev,
		       struct nouveau_channel *oc, struct nouveau_channel *rc,
		       uint32_t handle, int size, int align, uint32_t flags,
		       struct nouveau_gpuobj_ref **ref)
{
	struct nouveau_gpuobj *gpuobj = NULL;
	int ret;

	if ((ret = nouveau_gpuobj_new(dev, oc, size, align, flags, &gpuobj)))
		return ret;

	if ((ret = nouveau_gpuobj_ref_add(dev, rc, handle, gpuobj, ref))) {
		nouveau_gpuobj_del(dev, &gpuobj);
		return ret;
	}

	return 0;
}

int
nouveau_gpuobj_ref_find(struct nouveau_channel *chan, uint32_t handle,
			struct nouveau_gpuobj_ref **ref_ret)
{
	struct nouveau_gpuobj_ref *ref;
	struct list_head *entry, *tmp;

	list_for_each_safe(entry, tmp, &chan->ramht_refs) {
		ref = list_entry(entry, struct nouveau_gpuobj_ref, list);

		if (ref->handle == handle) {
			if (ref_ret)
				*ref_ret = ref;
			return 0;
		}
	}

	return -EINVAL;
}

int
nouveau_gpuobj_new_fake(struct drm_device *dev, uint32_t p_offset,
			uint32_t b_offset, uint32_t size,
			uint32_t flags, struct nouveau_gpuobj **pgpuobj,
			struct nouveau_gpuobj_ref **pref)
{
	struct drm_nouveau_private *dev_priv = dev->dev_private;
	struct nouveau_gpuobj *gpuobj = NULL;
	int i;

	DRM_DEBUG("p_offset=0x%08x b_offset=0x%08x size=0x%08x flags=0x%08x\n",
		  p_offset, b_offset, size, flags);

	gpuobj = drm_calloc(1, sizeof(*gpuobj), DRM_MEM_DRIVER);
	if (!gpuobj)
		return -ENOMEM;
	DRM_DEBUG("gpuobj %p\n", gpuobj);
	gpuobj->im_channel = -1;
	gpuobj->flags      = flags | NVOBJ_FLAG_FAKE;

	list_add_tail(&gpuobj->list, &dev_priv->gpuobj_list);

	if (p_offset != ~0) {
		gpuobj->im_pramin = drm_calloc(1, sizeof(struct mem_block),
					       DRM_MEM_DRIVER);
		if (!gpuobj->im_pramin) {
			nouveau_gpuobj_del(dev, &gpuobj);
			return -ENOMEM;
		}
		gpuobj->im_pramin->start = p_offset;
		gpuobj->im_pramin->size  = size;
	}

	if (b_offset != ~0) {
		gpuobj->im_backing = drm_calloc(1, sizeof(struct mem_block),
					       DRM_MEM_DRIVER);
		if (!gpuobj->im_backing) {
			nouveau_gpuobj_del(dev, &gpuobj);
			return -ENOMEM;
		}
		gpuobj->im_backing->start = b_offset;
		gpuobj->im_backing->size  = size;
	}

	if (gpuobj->flags & NVOBJ_FLAG_ZERO_ALLOC) {
		for (i = 0; i < gpuobj->im_pramin->size; i += 4)
			INSTANCE_WR(gpuobj, i/4, 0);
	}

	if (pref) {
		if ((i = nouveau_gpuobj_ref_add(dev, NULL, 0, gpuobj, pref))) {
			nouveau_gpuobj_del(dev, &gpuobj);
			return i;
		}
	}

	if (pgpuobj)
		*pgpuobj = gpuobj;
	return 0;
}


static int
nouveau_gpuobj_class_instmem_size(struct drm_device *dev, int class)
{
	struct drm_nouveau_private *dev_priv = dev->dev_private;

	/*XXX: dodgy hack for now */
	if (dev_priv->card_type >= NV_50)
		return 24;
	if (dev_priv->card_type >= NV_40)
		return 32;
	return 16;
}

/*
   DMA objects are used to reference a piece of memory in the
   framebuffer, PCI or AGP address space. Each object is 16 bytes big
   and looks as follows:

   entry[0]
   11:0  class (seems like I can always use 0 here)
   12    page table present?
   13    page entry linear?
   15:14 access: 0 rw, 1 ro, 2 wo
   17:16 target: 0 NV memory, 1 NV memory tiled, 2 PCI, 3 AGP
   31:20 dma adjust (bits 0-11 of the address)
   entry[1]
   dma limit (size of transfer)
   entry[X]
   1     0 readonly, 1 readwrite
   31:12 dma frame address of the page (bits 12-31 of the address)
   entry[N]
   page table terminator, same value as the first pte, as does nvidia
   rivatv uses 0xffffffff

   Non linear page tables need a list of frame addresses afterwards,
   the rivatv project has some info on this.

   The method below creates a DMA object in instance RAM and returns a handle
   to it that can be used to set up context objects.
*/
int
nouveau_gpuobj_dma_new(struct nouveau_channel *chan, int class,
		       uint64_t offset, uint64_t size, int access,
		       int target, struct nouveau_gpuobj **gpuobj)
{
	struct drm_device *dev = chan->dev;
	struct drm_nouveau_private *dev_priv = dev->dev_private;
	int ret;
	uint32_t is_scatter_gather = 0;

	/* Total number of pages covered by the request.
	 */
	const unsigned int page_count = (size + PAGE_SIZE - 1) / PAGE_SIZE;


	DRM_DEBUG("ch%d class=0x%04x offset=0x%llx size=0x%llx\n",
		  chan->id, class, offset, size);
	DRM_DEBUG("access=%d target=%d\n", access, target);

	switch (target) {
        case NV_DMA_TARGET_AGP:
                 offset += dev_priv->gart_info.aper_base;
                 break;
        case NV_DMA_TARGET_PCI_NONLINEAR:
                /*assume the "offset" is a virtual memory address*/
                is_scatter_gather = 1;
                /*put back the right value*/
                target = NV_DMA_TARGET_PCI;
                break;
        default:
                break;
        }

	ret = nouveau_gpuobj_new(dev, chan,
				 is_scatter_gather ? ((page_count << 2) + 12) : nouveau_gpuobj_class_instmem_size(dev, class),
				 16,
				 NVOBJ_FLAG_ZERO_ALLOC | NVOBJ_FLAG_ZERO_FREE,
				 gpuobj);
	if (ret) {
		DRM_ERROR("Error creating gpuobj: %d\n", ret);
		return ret;
	}

	if (dev_priv->card_type < NV_50) {
		uint32_t frame, adjust, pte_flags = 0;
		adjust = offset &  0x00000fff;
		if (access != NV_DMA_ACCESS_RO)
				pte_flags |= (1<<1);

		if ( ! is_scatter_gather )
			{
			frame  = offset & ~0x00000fff;

			INSTANCE_WR(*gpuobj, 0, ((1<<12) | (1<<13) |
					(adjust << 20) |
					 (access << 14) |
					 (target << 16) |
					  class));
			INSTANCE_WR(*gpuobj, 1, size - 1);
			INSTANCE_WR(*gpuobj, 2, frame | pte_flags);
			INSTANCE_WR(*gpuobj, 3, frame | pte_flags);
			}
		else
			{
			/* Intial page entry in the scatter-gather area that
			 * corresponds to the base offset
			 */
			unsigned int idx = offset / PAGE_SIZE;

			uint32_t instance_offset;
			unsigned int i;

			if ((idx + page_count) > dev->sg->pages) {
				DRM_ERROR("Requested page range exceedes "
					  "allocated scatter-gather range!");
				return -E2BIG;
			}

			DRM_DEBUG("Creating PCI DMA object using virtual zone starting at %#llx, size %d\n", offset, (uint32_t)size);
	                INSTANCE_WR(*gpuobj, 0, ((1<<12) | (0<<13) |
                                (adjust << 20) |
                                (access << 14) |
                                (target << 16) |
                                class));
			INSTANCE_WR(*gpuobj, 1, (uint32_t) size-1);


			/*write starting at the third dword*/
			instance_offset = 2;

			/*for each PAGE, get its bus address, fill in the page table entry, and advance*/
			for (i = 0; i < page_count; i++) {
				if (dev->sg->busaddr[idx] == 0) {
					dev->sg->busaddr[idx] =
						pci_map_page(dev->pdev,
							     dev->sg->pagelist[idx],
							     0,
							     PAGE_SIZE,
							     DMA_BIDIRECTIONAL);

					if (dma_mapping_error(dev->sg->busaddr[idx])) {
						return -ENOMEM;
					}
				}

				frame = (uint32_t) dev->sg->busaddr[idx];
				INSTANCE_WR(*gpuobj, instance_offset,
					    frame | pte_flags);

				idx++;
				instance_offset ++;
			}
			}
	} else {
		uint32_t flags0, flags5;

		if (target == NV_DMA_TARGET_VIDMEM) {
			flags0 = 0x00190000;
			flags5 = 0x00010000;
		} else {
			flags0 = 0x7fc00000;
			flags5 = 0x00080000;
		}

		INSTANCE_WR(*gpuobj, 0, flags0 | class);
		INSTANCE_WR(*gpuobj, 1, offset + size - 1);
		INSTANCE_WR(*gpuobj, 2, offset);
		INSTANCE_WR(*gpuobj, 5, flags5);
	}

	(*gpuobj)->engine = NVOBJ_ENGINE_SW;
	(*gpuobj)->class  = class;
	return 0;
}

int
nouveau_gpuobj_gart_dma_new(struct nouveau_channel *chan,
			    uint64_t offset, uint64_t size, int access,
			    struct nouveau_gpuobj **gpuobj,
			    uint32_t *o_ret)
{
	struct drm_device *dev = chan->dev;
	struct drm_nouveau_private *dev_priv = dev->dev_private;
	int ret;

	if (dev_priv->gart_info.type == NOUVEAU_GART_AGP ||
	    (dev_priv->card_type >= NV_50 &&
	     dev_priv->gart_info.type == NOUVEAU_GART_SGDMA)) {
		ret = nouveau_gpuobj_dma_new(chan, NV_CLASS_DMA_IN_MEMORY,
					     offset, size, access,
					     NV_DMA_TARGET_AGP, gpuobj);
		if (o_ret)
			*o_ret = 0;
	} else
	if (dev_priv->gart_info.type == NOUVEAU_GART_SGDMA) {
		*gpuobj = dev_priv->gart_info.sg_ctxdma;
		if (offset & ~0xffffffffULL) {
			DRM_ERROR("obj offset exceeds 32-bits\n");
			return -EINVAL;
		}
		if (o_ret)
			*o_ret = (uint32_t)offset;
		ret = (*gpuobj != NULL) ? 0 : -EINVAL;
	} else {
		DRM_ERROR("Invalid GART type %d\n", dev_priv->gart_info.type);
		return -EINVAL;
	}

	return ret;
}

/* Context objects in the instance RAM have the following structure.
 * On NV40 they are 32 byte long, on NV30 and smaller 16 bytes.

   NV4 - NV30:

   entry[0]
   11:0 class
   12   chroma key enable
   13   user clip enable
   14   swizzle enable
   17:15 patch config:
       scrcopy_and, rop_and, blend_and, scrcopy, srccopy_pre, blend_pre
   18   synchronize enable
   19   endian: 1 big, 0 little
   21:20 dither mode
   23    single step enable
   24    patch status: 0 invalid, 1 valid
   25    context_surface 0: 1 valid
   26    context surface 1: 1 valid
   27    context pattern: 1 valid
   28    context rop: 1 valid
   29,30 context beta, beta4
   entry[1]
   7:0   mono format
   15:8  color format
   31:16 notify instance address
   entry[2]
   15:0  dma 0 instance address
   31:16 dma 1 instance address
   entry[3]
   dma method traps

   NV40:
   No idea what the exact format is. Here's what can be deducted:

   entry[0]:
   11:0  class  (maybe uses more bits here?)
   17    user clip enable
   21:19 patch config
   25    patch status valid ?
   entry[1]:
   15:0  DMA notifier  (maybe 20:0)
   entry[2]:
   15:0  DMA 0 instance (maybe 20:0)
   24    big endian
   entry[3]:
   15:0  DMA 1 instance (maybe 20:0)
   entry[4]:
   entry[5]:
   set to 0?
*/
int
nouveau_gpuobj_gr_new(struct nouveau_channel *chan, int class,
		      struct nouveau_gpuobj **gpuobj)
{
	struct drm_device *dev = chan->dev;
	struct drm_nouveau_private *dev_priv = dev->dev_private;
	int ret;

	DRM_DEBUG("ch%d class=0x%04x\n", chan->id, class);

	ret = nouveau_gpuobj_new(dev, chan,
				 nouveau_gpuobj_class_instmem_size(dev, class),
				 16,
				 NVOBJ_FLAG_ZERO_ALLOC | NVOBJ_FLAG_ZERO_FREE,
				 gpuobj);
	if (ret) {
		DRM_ERROR("Error creating gpuobj: %d\n", ret);
		return ret;
	}

	if (dev_priv->card_type >= NV_50) {
		INSTANCE_WR(*gpuobj, 0, class);
		INSTANCE_WR(*gpuobj, 5, 0x00010000);
	} else {
	switch (class) {
	case NV_CLASS_NULL:
		INSTANCE_WR(*gpuobj, 0, 0x00001030);
		INSTANCE_WR(*gpuobj, 1, 0xFFFFFFFF);
		break;
	default:
		if (dev_priv->card_type >= NV_40) {
			INSTANCE_WR(*gpuobj, 0, class);
#ifdef __BIG_ENDIAN
			INSTANCE_WR(*gpuobj, 2, 0x01000000);
#endif
		} else {
#ifdef __BIG_ENDIAN
			INSTANCE_WR(*gpuobj, 0, class | 0x00080000);
#else
			INSTANCE_WR(*gpuobj, 0, class);
#endif
		}
	}
	}

	(*gpuobj)->engine = NVOBJ_ENGINE_GR;
	(*gpuobj)->class  = class;
	return 0;
}

static int
nouveau_gpuobj_channel_init_pramin(struct nouveau_channel *chan)
{
	struct drm_device *dev = chan->dev;
	struct drm_nouveau_private *dev_priv = dev->dev_private;
	struct nouveau_gpuobj *pramin = NULL;
	int size, base, ret;

	DRM_DEBUG("ch%d\n", chan->id);

	/* Base amount for object storage (4KiB enough?) */
	size = 0x1000;
	base = 0;

	/* PGRAPH context */

	if (dev_priv->card_type == NV_50) {
		/* Various fixed table thingos */
		size += 0x1400; /* mostly unknown stuff */
		size += 0x4000; /* vm pd */
		base  = 0x6000;
		/* RAMHT, not sure about setting size yet, 32KiB to be safe */
		size += 0x8000;
		/* RAMFC */
		size += 0x1000;
		/* PGRAPH context */
		size += 0x60000;
	}

	DRM_DEBUG("ch%d PRAMIN size: 0x%08x bytes, base alloc=0x%08x\n",
		  chan->id, size, base);
	ret = nouveau_gpuobj_new_ref(dev, NULL, NULL, 0, size, 0x1000, 0,
				     &chan->ramin);
	if (ret) {
		DRM_ERROR("Error allocating channel PRAMIN: %d\n", ret);
		return ret;
	}
	pramin = chan->ramin->gpuobj;

	ret = nouveau_mem_init_heap(&chan->ramin_heap,
				    pramin->im_pramin->start + base, size);
	if (ret) {
		DRM_ERROR("Error creating PRAMIN heap: %d\n", ret);
		nouveau_gpuobj_ref_del(dev, &chan->ramin);
		return ret;
	}

	return 0;
}

int
nouveau_gpuobj_channel_init(struct nouveau_channel *chan,
			    uint32_t vram_h, uint32_t tt_h)
{
	struct drm_device *dev = chan->dev;
	struct drm_nouveau_private *dev_priv = dev->dev_private;
	struct nouveau_gpuobj *vram = NULL, *tt = NULL;
	int ret, i;

	INIT_LIST_HEAD(&chan->ramht_refs);

	DRM_DEBUG("ch%d vram=0x%08x tt=0x%08x\n", chan->id, vram_h, tt_h);

	/* Reserve a block of PRAMIN for the channel
	 *XXX: maybe on <NV50 too at some point
	 */
	if (0 || dev_priv->card_type == NV_50) {
		ret = nouveau_gpuobj_channel_init_pramin(chan);
		if (ret)
			return ret;
	}

	/* NV50 VM
	 *  - Allocate per-channel page-directory
	 *  - Point offset 0-512MiB at shared PCIEGART table
	 *  - Point offset 512-1024MiB at shared VRAM table
	 */
	if (dev_priv->card_type >= NV_50) {
		uint32_t vm_offset;

		vm_offset = (dev_priv->chipset & 0xf0) == 0x50 ? 0x1400 : 0x200;
		vm_offset += chan->ramin->gpuobj->im_pramin->start;
		if ((ret = nouveau_gpuobj_new_fake(dev, vm_offset, ~0, 0x4000,
						   0, &chan->vm_pd, NULL)))
			return ret;
		for (i=0; i<0x4000; i+=8) {
			INSTANCE_WR(chan->vm_pd, (i+0)/4, 0x00000000);
			INSTANCE_WR(chan->vm_pd, (i+4)/4, 0xdeadcafe);
		}

		if ((ret = nouveau_gpuobj_ref_add(dev, NULL, 0,
						  dev_priv->gart_info.sg_ctxdma,
						  &chan->vm_gart_pt)))
			return ret;
		INSTANCE_WR(chan->vm_pd, (0+0)/4,
			    chan->vm_gart_pt->instance | 0x03);
		INSTANCE_WR(chan->vm_pd, (0+4)/4, 0x00000000);

		if ((ret = nouveau_gpuobj_ref_add(dev, NULL, 0,
						  dev_priv->vm_vram_pt,
						  &chan->vm_vram_pt)))
			return ret;
		INSTANCE_WR(chan->vm_pd, (8+0)/4,
			    chan->vm_vram_pt->instance | 0x61);
		INSTANCE_WR(chan->vm_pd, (8+4)/4, 0x00000000);
	}

	/* RAMHT */
	if (dev_priv->card_type < NV_50) {
		ret = nouveau_gpuobj_ref_add(dev, NULL, 0, dev_priv->ramht,
					     &chan->ramht);
		if (ret)
			return ret;
	} else {
		ret = nouveau_gpuobj_new_ref(dev, chan, chan, 0,
					     0x8000, 16,
					     NVOBJ_FLAG_ZERO_ALLOC,
					     &chan->ramht);
		if (ret)
			return ret;
	}

	/* VRAM ctxdma */
	if (dev_priv->card_type >= NV_50) {
		ret = nouveau_gpuobj_dma_new(chan, NV_CLASS_DMA_IN_MEMORY,
					     512*1024*1024,
					     dev_priv->fb_available_size,
					     NV_DMA_ACCESS_RW,
					     NV_DMA_TARGET_AGP, &vram);
		if (ret) {
			DRM_ERROR("Error creating VRAM ctxdma: %d\n", ret);
			return ret;
		}
	} else
	if ((ret = nouveau_gpuobj_dma_new(chan, NV_CLASS_DMA_IN_MEMORY,
					  0, dev_priv->fb_available_size,
					  NV_DMA_ACCESS_RW,
					  NV_DMA_TARGET_VIDMEM, &vram))) {
		DRM_ERROR("Error creating VRAM ctxdma: %d\n", ret);
		return ret;
	}

	if ((ret = nouveau_gpuobj_ref_add(dev, chan, vram_h, vram, NULL))) {
		DRM_ERROR("Error referencing VRAM ctxdma: %d\n", ret);
		return ret;
	}

	/* TT memory ctxdma */
	if (dev_priv->gart_info.type != NOUVEAU_GART_NONE) {
		ret = nouveau_gpuobj_gart_dma_new(chan, 0,
						  dev_priv->gart_info.aper_size,
						  NV_DMA_ACCESS_RW, &tt, NULL);
	} else
	if (dev_priv->pci_heap) {
		ret = nouveau_gpuobj_dma_new(chan, NV_CLASS_DMA_IN_MEMORY,
					     0, dev->sg->pages * PAGE_SIZE,
					     NV_DMA_ACCESS_RW,
					     NV_DMA_TARGET_PCI_NONLINEAR, &tt);
	} else {
		DRM_ERROR("Invalid GART type %d\n", dev_priv->gart_info.type);
		ret = -EINVAL;
	}

	if (ret) {
		DRM_ERROR("Error creating TT ctxdma: %d\n", ret);
		return ret;
	}

	ret = nouveau_gpuobj_ref_add(dev, chan, tt_h, tt, NULL);
	if (ret) {
		DRM_ERROR("Error referencing TT ctxdma: %d\n", ret);
		return ret;
	}

	return 0;
}

void
nouveau_gpuobj_channel_takedown(struct nouveau_channel *chan)
{
	struct drm_device *dev = chan->dev;
	struct list_head *entry, *tmp;
	struct nouveau_gpuobj_ref *ref;

	DRM_DEBUG("ch%d\n", chan->id);

	list_for_each_safe(entry, tmp, &chan->ramht_refs) {
		ref = list_entry(entry, struct nouveau_gpuobj_ref, list);

		nouveau_gpuobj_ref_del(dev, &ref);
	}

	nouveau_gpuobj_ref_del(dev, &chan->ramht);

	nouveau_gpuobj_del(dev, &chan->vm_pd);
	nouveau_gpuobj_ref_del(dev, &chan->vm_gart_pt);
	nouveau_gpuobj_ref_del(dev, &chan->vm_vram_pt);

	if (chan->ramin_heap)
		nouveau_mem_takedown(&chan->ramin_heap);
	if (chan->ramin)
		nouveau_gpuobj_ref_del(dev, &chan->ramin);

}

int nouveau_ioctl_grobj_alloc(struct drm_device *dev, void *data,
			      struct drm_file *file_priv)
{
	struct nouveau_channel *chan;
	struct drm_nouveau_grobj_alloc *init = data;
	struct nouveau_gpuobj *gr = NULL;
	int ret;

	NOUVEAU_CHECK_INITIALISED_WITH_RETURN;
	NOUVEAU_GET_USER_CHANNEL_WITH_RETURN(init->channel, file_priv, chan);

	//FIXME: check args, only allow trusted objects to be created

	if (init->handle == ~0)
		return -EINVAL;

	if (nouveau_gpuobj_ref_find(chan, init->handle, NULL) == 0)
		return -EEXIST;

	ret = nouveau_gpuobj_gr_new(chan, init->class, &gr);
	if (ret) {
		DRM_ERROR("Error creating gr object: %d (%d/0x%08x)\n",
			  ret, init->channel, init->handle);
		return ret;
	}

	if ((ret = nouveau_gpuobj_ref_add(dev, chan, init->handle, gr, NULL))) {
		DRM_ERROR("Error referencing gr object: %d (%d/0x%08x\n)",
			  ret, init->channel, init->handle);
		nouveau_gpuobj_del(dev, &gr);
		return ret;
	}

	return 0;
}

int nouveau_ioctl_gpuobj_free(struct drm_device *dev, void *data,
			      struct drm_file *file_priv)
{
	struct drm_nouveau_gpuobj_free *objfree = data;
	struct nouveau_gpuobj_ref *ref;
	struct nouveau_channel *chan;
	int ret;

	NOUVEAU_CHECK_INITIALISED_WITH_RETURN;
	NOUVEAU_GET_USER_CHANNEL_WITH_RETURN(objfree->channel, file_priv, chan);

	if ((ret = nouveau_gpuobj_ref_find(chan, objfree->handle, &ref)))
		return ret;
	nouveau_gpuobj_ref_del(dev, &ref);

	return 0;
}