summaryrefslogtreecommitdiff
path: root/shared-core/nouveau_object.c
blob: 19325f3725e811ab440128beb4a213016ce6ebab (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
/*
 * Copyright (C) 2006 Ben Skeggs.
 *
 * All Rights Reserved.
 *
 * Permission is hereby granted, free of charge, to any person obtaining
 * a copy of this software and associated documentation files (the
 * "Software"), to deal in the Software without restriction, including
 * without limitation the rights to use, copy, modify, merge, publish,
 * distribute, sublicense, and/or sell copies of the Software, and to
 * permit persons to whom the Software is furnished to do so, subject to
 * the following conditions:
 *
 * The above copyright notice and this permission notice (including the
 * next paragraph) shall be included in all copies or substantial
 * portions of the Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
 * IN NO EVENT SHALL THE COPYRIGHT OWNER(S) AND/OR ITS SUPPLIERS BE
 * LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
 * OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
 * WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
 *
 */

/*
 * Authors:
 *   Ben Skeggs <darktama@iinet.net.au>
 */

#include "drmP.h"
#include "drm.h"
#include "nouveau_drv.h"
#include "nouveau_drm.h"

/* NVidia uses context objects to drive drawing operations.

   Context objects can be selected into 8 subchannels in the FIFO,
   and then used via DMA command buffers.

   A context object is referenced by a user defined handle (CARD32). The HW
   looks up graphics objects in a hash table in the instance RAM.

   An entry in the hash table consists of 2 CARD32. The first CARD32 contains
   the handle, the second one a bitfield, that contains the address of the
   object in instance RAM.

   The format of the second CARD32 seems to be:

   NV4 to NV30:

   15: 0  instance_addr >> 4
   17:16  engine (here uses 1 = graphics)
   28:24  channel id (here uses 0)
   31	  valid (use 1)

   NV40:

   15: 0  instance_addr >> 4   (maybe 19-0)
   21:20  engine (here uses 1 = graphics)
   I'm unsure about the other bits, but using 0 seems to work.

   The key into the hash table depends on the object handle and channel id and
   is given as:
*/
static uint32_t
nouveau_ramht_hash_handle(struct drm_device *dev, int channel, uint32_t handle)
{
	struct drm_nouveau_private *dev_priv=dev->dev_private;
	uint32_t hash = 0;
	int i;

	DRM_DEBUG("ch%d handle=0x%08x\n", channel, handle);

	for (i=32;i>0;i-=dev_priv->ramht_bits) {
		hash ^= (handle & ((1 << dev_priv->ramht_bits) - 1));
		handle >>= dev_priv->ramht_bits;
	}
	if (dev_priv->card_type < NV_50)
		hash ^= channel << (dev_priv->ramht_bits - 4);
	hash <<= 3;

	DRM_DEBUG("hash=0x%08x\n", hash);
	return hash;
}

static int
nouveau_ramht_entry_valid(struct drm_device *dev, struct nouveau_gpuobj *ramht,
			  uint32_t offset)
{
	struct drm_nouveau_private *dev_priv=dev->dev_private;
	uint32_t ctx = INSTANCE_RD(ramht, (offset + 4)/4);

	if (dev_priv->card_type < NV_40)
		return ((ctx & NV_RAMHT_CONTEXT_VALID) != 0);
	return (ctx != 0);
}

static int
nouveau_ramht_insert(struct drm_device *dev, struct nouveau_gpuobj_ref *ref)
{
	struct drm_nouveau_private *dev_priv=dev->dev_private;
	struct nouveau_channel *chan = dev_priv->fifos[ref->channel];
	struct nouveau_gpuobj *ramht = chan->ramht ? chan->ramht->gpuobj : NULL;
	struct nouveau_gpuobj *gpuobj = ref->gpuobj;
	uint32_t ctx, co, ho;

	if (!ramht) {
		DRM_ERROR("No hash table!\n");
		return -EINVAL;
	}

	if (dev_priv->card_type < NV_40) {
		ctx = NV_RAMHT_CONTEXT_VALID | (ref->instance >> 4) |
		      (ref->channel   << NV_RAMHT_CONTEXT_CHANNEL_SHIFT) |
		      (gpuobj->engine << NV_RAMHT_CONTEXT_ENGINE_SHIFT);
	} else
	if (dev_priv->card_type < NV_50) {
		ctx = (ref->instance >> 4) |
		      (ref->channel   << NV40_RAMHT_CONTEXT_CHANNEL_SHIFT) |
		      (gpuobj->engine << NV40_RAMHT_CONTEXT_ENGINE_SHIFT);
	} else {
		ctx = (ref->instance  >> 4) |
		      (gpuobj->engine << NV40_RAMHT_CONTEXT_ENGINE_SHIFT);
	}

	co = ho = nouveau_ramht_hash_handle(dev, ref->channel, ref->handle);
	do {
		if (!nouveau_ramht_entry_valid(dev, ramht, co)) {
			DRM_DEBUG("insert ch%d 0x%08x: h=0x%08x, c=0x%08x\n",
				  ref->channel, co, ref->handle, ctx);
			INSTANCE_WR(ramht, (co + 0)/4, ref->handle);
			INSTANCE_WR(ramht, (co + 4)/4, ctx);

			list_add_tail(&ref->list, &chan->ramht_refs);
			return 0;
		}
		DRM_DEBUG("collision ch%d 0x%08x: h=0x%08x\n",
			  ref->channel, co, INSTANCE_RD(ramht, co/4));

		co += 8;
		if (co >= dev_priv->ramht_size)
			co = 0;
	} while (co != ho);

	DRM_ERROR("RAMHT space exhausted. ch=%d\n", ref->channel);
	return -ENOMEM;
}

static void
nouveau_ramht_remove(struct drm_device *dev, struct nouveau_gpuobj_ref *ref)
{
	struct drm_nouveau_private *dev_priv = dev->dev_private;
	struct nouveau_channel *chan = dev_priv->fifos[ref->channel];
	struct nouveau_gpuobj *ramht = chan->ramht ? chan->ramht->gpuobj : NULL;
	uint32_t co, ho;

	if (!ramht) {
		DRM_ERROR("No hash table!\n");
		return;
	}

	co = ho = nouveau_ramht_hash_handle(dev, ref->channel, ref->handle);
	do {
		if (nouveau_ramht_entry_valid(dev, ramht, co) &&
		    (ref->handle == INSTANCE_RD(ramht, (co/4)))) {
			DRM_DEBUG("remove ch%d 0x%08x: h=0x%08x, c=0x%08x\n",
				  ref->channel, co, ref->handle,
				  INSTANCE_RD(ramht, (co + 4)));
			INSTANCE_WR(ramht, (co + 0)/4, 0x00000000);
			INSTANCE_WR(ramht, (co + 4)/4, 0x00000000);

			list_del(&ref->list);
			return;
		}

		co += 8;
		if (co >= dev_priv->ramht_size)
			co = 0;
	} while (co != ho);

	DRM_ERROR("RAMHT entry not found. ch=%d, handle=0x%08x\n",
		  ref->channel, ref->handle);
}

int
nouveau_gpuobj_new(struct drm_device *dev, struct nouveau_channel *chan,
		   int size, int align, uint32_t flags,
		   struct nouveau_gpuobj **gpuobj_ret)
{
	struct drm_nouveau_private *dev_priv = dev->dev_private;
	struct nouveau_engine *engine = &dev_priv->Engine;
	struct nouveau_gpuobj *gpuobj;
	struct mem_block *pramin = NULL;
	int ret;

	DRM_DEBUG("ch%d size=%d align=%d flags=0x%08x\n",
		  chan ? chan->id : -1, size, align, flags);

	if (!dev_priv || !gpuobj_ret || *gpuobj_ret != NULL)
		return -EINVAL;

	gpuobj = drm_calloc(1, sizeof(*gpuobj), DRM_MEM_DRIVER);
	if (!gpuobj)
		return -ENOMEM;
	DRM_DEBUG("gpuobj %p\n", gpuobj);
	gpuobj->flags = flags;
	gpuobj->im_channel = chan ? chan->id : -1;

	list_add_tail(&gpuobj->list, &dev_priv->gpuobj_list);

	/* Choose between global instmem heap, and per-channel private
	 * instmem heap.  On <NV50 allow requests for private instmem
	 * to be satisfied from global heap if no per-channel area
	 * available.
	 */
	if (chan) {
		if (chan->ramin_heap) {
			DRM_DEBUG("private heap\n");
			pramin = chan->ramin_heap;
		} else
		if (dev_priv->card_type < NV_50) {
			DRM_DEBUG("global heap fallback\n");
			pramin = dev_priv->ramin_heap;
		}
	} else {
		DRM_DEBUG("global heap\n");
		pramin = dev_priv->ramin_heap;
	}

	if (!pramin) {
		DRM_ERROR("No PRAMIN heap!\n");
		return -EINVAL;
	}

	if (!chan && (ret = engine->instmem.populate(dev, gpuobj, &size))) {
		nouveau_gpuobj_del(dev, &gpuobj);
		return ret;
	}

	/* Allocate a chunk of the PRAMIN aperture */
	gpuobj->im_pramin = nouveau_mem_alloc_block(pramin, size,
						    drm_order(align),
						    (struct drm_file *)-2, 0);
	if (!gpuobj->im_pramin) {
		nouveau_gpuobj_del(dev, &gpuobj);
		return -ENOMEM;
	}
	gpuobj->im_pramin->flags = NOUVEAU_MEM_INSTANCE;

	if (!chan && (ret = engine->instmem.bind(dev, gpuobj))) {
		nouveau_gpuobj_del(dev, &gpuobj);
		return ret;
	}

	if (gpuobj->flags & NVOBJ_FLAG_ZERO_ALLOC) {
		int i;

		for (i = 0; i < gpuobj->im_pramin->size; i += 4)
			INSTANCE_WR(gpuobj, i/4, 0);
	}

	*gpuobj_ret = gpuobj;
	return 0;
}

int
nouveau_gpuobj_early_init(struct drm_device *dev)
{
	struct drm_nouveau_private *dev_priv = dev->dev_private;

	DRM_DEBUG("\n");

	INIT_LIST_HEAD(&dev_priv->gpuobj_list);

	return 0;
}

int
nouveau_gpuobj_init(struct drm_device *dev)
{
	struct drm_nouveau_private *dev_priv = dev->dev_private;
	int ret;

	DRM_DEBUG("\n");

	if (dev_priv->card_type < NV_50) {
		if ((ret = nouveau_gpuobj_new_fake(dev, dev_priv->ramht_offset,
						   ~0, dev_priv->ramht_size,
						   NVOBJ_FLAG_ZERO_ALLOC |
						   NVOBJ_FLAG_ALLOW_NO_REFS,
						   &dev_priv->ramht, NULL)))
			return ret;
	}

	return 0;
}

void
nouveau_gpuobj_takedown(struct drm_device *dev)
{
	struct drm_nouveau_private *dev_priv = dev->dev_private;

	DRM_DEBUG("\n");

	nouveau_gpuobj_del(dev, &dev_priv->ramht);
}

void
nouveau_gpuobj_late_takedown(struct drm_device *dev)
{
	struct drm_nouveau_private *dev_priv = dev->dev_private;
	struct nouveau_gpuobj *gpuobj = NULL;
	struct list_head *entry, *tmp;

	DRM_DEBUG("\n");

	list_for_each_safe(entry, tmp, &dev_priv->gpuobj_list) {
		gpuobj = list_entry(entry, struct nouveau_gpuobj, list);

		DRM_ERROR("gpuobj %p still exists at takedown, refs=%d\n",
			  gpuobj, gpuobj->refcount);
		gpuobj->refcount = 0;
		nouveau_gpuobj_del(dev, &gpuobj);
	}
}

int
nouveau_gpuobj_del(struct drm_device *dev, struct nouveau_gpuobj **pgpuobj)
{
	struct drm_nouveau_private *dev_priv = dev->dev_private;
	struct nouveau_engine *engine = &dev_priv->Engine;
	struct nouveau_gpuobj *gpuobj;

	DRM_DEBUG("gpuobj %p\n", pgpuobj ? *pgpuobj : NULL);

	if (!dev_priv || !pgpuobj || !(*pgpuobj))
		return -EINVAL;
	gpuobj = *pgpuobj;

	if (gpuobj->refcount != 0) {
		DRM_ERROR("gpuobj refcount is %d\n", gpuobj->refcount);
		return -EINVAL;
	}

	if (gpuobj->dtor)
		gpuobj->dtor(dev, gpuobj);

	if (gpuobj->im_backing) {
		if (gpuobj->flags & NVOBJ_FLAG_FAKE)
			drm_free(gpuobj->im_backing,
				 sizeof(*gpuobj->im_backing), DRM_MEM_DRIVER);
		else
			engine->instmem.clear(dev, gpuobj);
	}

	if (gpuobj->im_pramin) {
		if (gpuobj->flags & NVOBJ_FLAG_FAKE)
			drm_free(gpuobj->im_pramin, sizeof(*gpuobj->im_pramin),
				 DRM_MEM_DRIVER);
		else
			nouveau_mem_free_block(gpuobj->im_pramin);
	}

	list_del(&gpuobj->list);

	*pgpuobj = NULL;
	drm_free(gpuobj, sizeof(*gpuobj), DRM_MEM_DRIVER);
	return 0;
}

static int
nouveau_gpuobj_instance_get(struct drm_device *dev,
			    struct nouveau_channel *chan,
			    struct nouveau_gpuobj *gpuobj, uint32_t *inst)
{
	struct drm_nouveau_private *dev_priv = dev->dev_private;
	struct nouveau_gpuobj *cpramin;

	/* <NV50 use PRAMIN address everywhere */
	if (dev_priv->card_type < NV_50) {
		*inst = gpuobj->im_pramin->start;
		return 0;
	}

	if (chan && gpuobj->im_channel != chan->id) {
		DRM_ERROR("Channel mismatch: obj %d, ref %d\n",
			  gpuobj->im_channel, chan->id);
		return -EINVAL;
	}

	/* NV50 channel-local instance */
	if (chan > 0) {
		cpramin = chan->ramin->gpuobj;
		*inst = gpuobj->im_pramin->start - cpramin->im_pramin->start;
		return 0;
	}

	/* NV50 global (VRAM) instance */
	if (gpuobj->im_channel < 0) {
		/* ...from global heap */
		if (!gpuobj->im_backing) {
			DRM_ERROR("AII, no VRAM backing gpuobj\n");
			return -EINVAL;
		}
		*inst = gpuobj->im_backing->start;
		return 0;
	} else {
		/* ...from local heap */
		cpramin = dev_priv->fifos[gpuobj->im_channel]->ramin->gpuobj;
		*inst = cpramin->im_backing->start +
			(gpuobj->im_pramin->start - cpramin->im_pramin->start);
		return 0;
	}

	return -EINVAL;
}

int
nouveau_gpuobj_ref_add(struct drm_device *dev, struct nouveau_channel *chan,
		       uint32_t handle, struct nouveau_gpuobj *gpuobj,
		       struct nouveau_gpuobj_ref **ref_ret)
{
	struct drm_nouveau_private *dev_priv = dev->dev_private;
	struct nouveau_gpuobj_ref *ref;
	uint32_t instance;
	int ret;

	DRM_DEBUG("ch%d h=0x%08x gpuobj=%p\n",
		  chan ? chan->id : -1, handle, gpuobj);

	if (!dev_priv || !gpuobj || (ref_ret && *ref_ret != NULL))
		return -EINVAL;

	if (!chan && !ref_ret)
		return -EINVAL;

	ret = nouveau_gpuobj_instance_get(dev, chan, gpuobj, &instance);
	if (ret)
		return ret;

	ref = drm_calloc(1, sizeof(*ref), DRM_MEM_DRIVER);
	if (!ref)
		return -ENOMEM;
	ref->gpuobj   = gpuobj;
	ref->channel  = chan ? chan->id : -1;
	ref->instance = instance;

	if (!ref_ret) {
		ref->handle = handle;

		ret = nouveau_ramht_insert(dev, ref);
		if (ret) {
			drm_free(ref, sizeof(*ref), DRM_MEM_DRIVER);
			return ret;
		}
	} else {
		ref->handle = ~0;
		*ref_ret = ref;
	}

	ref->gpuobj->refcount++;
	return 0;
}

int nouveau_gpuobj_ref_del(struct drm_device *dev, struct nouveau_gpuobj_ref **pref)
{
	struct nouveau_gpuobj_ref *ref;

	DRM_DEBUG("ref %p\n", pref ? *pref : NULL);

	if (!dev || !pref || *pref == NULL)
		return -EINVAL;
	ref = *pref;

	if (ref->handle != ~0)
		nouveau_ramht_remove(dev, ref);

	if (ref->gpuobj) {
		ref->gpuobj->refcount--;

		if (ref->gpuobj->refcount == 0) {
			if (!(ref->gpuobj->flags & NVOBJ_FLAG_ALLOW_NO_REFS))
				nouveau_gpuobj_del(dev, &ref->gpuobj);
		}
	}

	*pref = NULL;
	drm_free(ref, sizeof(ref), DRM_MEM_DRIVER);
	return 0;
}

int
nouveau_gpuobj_new_ref(struct drm_device *dev,
		       struct nouveau_channel *oc, struct nouveau_channel *rc,
		       uint32_t handle, int size, int align, uint32_t flags,
		       struct nouveau_gpuobj_ref **ref)
{
	struct nouveau_gpuobj *gpuobj = NULL;
	int ret;

	if ((ret = nouveau_gpuobj_new(dev, oc, size, align, flags, &gpuobj)))
		return ret;

	if ((ret = nouveau_gpuobj_ref_add(dev, rc, handle, gpuobj, ref))) {
		nouveau_gpuobj_del(dev, &gpuobj);
		return ret;
	}

	return 0;
}

int
nouveau_gpuobj_ref_find(struct nouveau_channel *chan, uint32_t handle,
			struct nouveau_gpuobj_ref **ref_ret)
{
	struct nouveau_gpuobj_ref *ref;
	struct list_head *entry, *tmp;

	list_for_each_safe(entry, tmp, &chan->ramht_refs) {
		ref = list_entry(entry, struct nouveau_gpuobj_ref, list);

		if (ref->handle == handle) {
			if (ref_ret)
				*ref_ret = ref;
			return 0;
		}
	}

	return -EINVAL;
}

int
nouveau_gpuobj_new_fake(struct drm_device *dev, uint32_t p_offset,
			uint32_t b_offset, uint32_t size,
			uint32_t flags, struct nouveau_gpuobj **pgpuobj,
			struct nouveau_gpuobj_ref **pref)
{
	struct drm_nouveau_private *dev_priv = dev->dev_private;
	struct nouveau_gpuobj *gpuobj = NULL;
	int i;

	DRM_DEBUG("p_offset=0x%08x b_offset=0x%08x size=0x%08x flags=0x%08x\n",
		  p_offset, b_offset, size, flags);

	gpuobj = drm_calloc(1, sizeof(*gpuobj), DRM_MEM_DRIVER);
	if (!gpuobj)
		return -ENOMEM;
	DRM_DEBUG("gpuobj %p\n", gpuobj);
	gpuobj->im_channel = -1;
	gpuobj->flags      = flags | NVOBJ_FLAG_FAKE;

	list_add_tail(&gpuobj->list, &dev_priv->gpuobj_list);

	if (p_offset != ~0) {
		gpuobj->im_pramin = drm_calloc(1, sizeof(struct mem_block),
					       DRM_MEM_DRIVER);
		if (!gpuobj->im_pramin) {
			nouveau_gpuobj_del(dev, &gpuobj);
			return -ENOMEM;
		}
		gpuobj->im_pramin->start = p_offset;
		gpuobj->im_pramin->size  = size;
	}

	if (b_offset != ~0) {
		gpuobj->im_backing = drm_calloc(1, sizeof(struct mem_block),
					       DRM_MEM_DRIVER);
		if (!gpuobj->im_backing) {
			nouveau_gpuobj_del(dev, &gpuobj);
			return -ENOMEM;
		}
		gpuobj->im_backing->start = b_offset;
		gpuobj->im_backing->size  = size;
	}

	if (gpuobj->flags & NVOBJ_FLAG_ZERO_ALLOC) {
		for (i = 0; i < gpuobj->im_pramin->size; i += 4)
			INSTANCE_WR(gpuobj, i/4, 0);
	}

	if (pref) {
		if ((i = nouveau_gpuobj_ref_add(dev, NULL, 0, gpuobj, pref))) {
			nouveau_gpuobj_del(dev, &gpuobj);
			return i;
		}
	}

	if (pgpuobj)
		*pgpuobj = gpuobj;
	return 0;
}


static int
nouveau_gpuobj_class_instmem_size(struct drm_device *dev, int class)
{
	struct drm_nouveau_private *dev_priv = dev->dev_private;

	/*XXX: dodgy hack for now */
	if (dev_priv->card_type >= NV_50)
		return 24;
	if (dev_priv->card_type >= NV_40)
		return 32;
	return 16;
}

/*
   DMA objects are used to reference a piece of memory in the
   framebuffer, PCI or AGP address space. Each object is 16 bytes big
   and looks as follows:

   entry[0]
   11:0  class (seems like I can always use 0 here)
   12    page table present?
   13    page entry linear?
   15:14 access: 0 rw, 1 ro, 2 wo
   17:16 target: 0 NV memory, 1 NV memory tiled, 2 PCI, 3 AGP
   31:20 dma adjust (bits 0-11 of the address)
   entry[1]
   dma limit (size of transfer)
   entry[X]
   1     0 readonly, 1 readwrite
   31:12 dma frame address of the page (bits 12-31 of the address)
   entry[N]
   page table terminator, same value as the first pte, as does nvidia
   rivatv uses 0xffffffff

   Non linear page tables need a list of frame addresses afterwards,
   the rivatv project has some info on this.

   The method below creates a DMA object in instance RAM and returns a handle
   to it that can be used to set up context objects.
*/
int
nouveau_gpuobj_dma_new(struct nouveau_channel *chan, int class,
		       uint64_t offset, uint64_t size, int access,
		       int target, struct nouveau_gpuobj **gpuobj)
{
	struct drm_device *dev = chan->dev;
	struct drm_nouveau_private *dev_priv = dev->dev_private;
	int ret;
	uint32_t is_scatter_gather = 0;

	/* Total number of pages covered by the request.
	 */
	const unsigned int page_count = (size + PAGE_SIZE - 1) / PAGE_SIZE;


	DRM_DEBUG("ch%d class=0x%04x offset=0x%llx size=0x%llx\n",
		  chan->id, class, offset, size);
	DRM_DEBUG("access=%d target=%d\n", access, target);

	switch (target) {
        case NV_DMA_TARGET_AGP:
                 offset += dev_priv->gart_info.aper_base;
                 break;
        case NV_DMA_TARGET_PCI_NONLINEAR:
                /*assume the "offset" is a virtual memory address*/
                is_scatter_gather = 1;
                /*put back the right value*/
                target = NV_DMA_TARGET_PCI;
                break;
        default:
                break;
        }

	ret = nouveau_gpuobj_new(dev, chan,
				 is_scatter_gather ? ((page_count << 2) + 12) : nouveau_gpuobj_class_instmem_size(dev, class),
				 16,
				 NVOBJ_FLAG_ZERO_ALLOC | NVOBJ_FLAG_ZERO_FREE,
				 gpuobj);
	if (ret) {
		DRM_ERROR("Error creating gpuobj: %d\n", ret);
		return ret;
	}

	if (dev_priv->card_type < NV_50) {
		uint32_t frame, adjust, pte_flags = 0;
		adjust = offset &  0x00000fff;
		if (access != NV_DMA_ACCESS_RO)
				pte_flags |= (1<<1);

		if ( ! is_scatter_gather )
			{
			frame  = offset & ~0x00000fff;

			INSTANCE_WR(*gpuobj, 0, ((1<<12) | (1<<13) |
					(adjust << 20) |
					 (access << 14) |
					 (target << 16) |
					  class));
			INSTANCE_WR(*gpuobj, 1, size - 1);
			INSTANCE_WR(*gpuobj, 2, frame | pte_flags);
			INSTANCE_WR(*gpuobj, 3, frame | pte_flags);
			}
		else
			{
			/* Intial page entry in the scatter-gather area that
			 * corresponds to the base offset
			 */
			unsigned int idx = offset / PAGE_SIZE;

			uint32_t instance_offset;
			unsigned int i;

			if ((idx + page_count) > dev->sg->pages) {
				DRM_ERROR("Requested page range exceedes "
					  "allocated scatter-gather range!");
				return -E2BIG;
			}

			DRM_DEBUG("Creating PCI DMA object using virtual zone starting at %#llx, size %d\n", offset, (uint32_t)size);
	                INSTANCE_WR(*gpuobj, 0, ((1<<12) | (0<<13) |
                                (adjust << 20) |
                                (access << 14) |
                                (target << 16) |
                                class));
			INSTANCE_WR(*gpuobj, 1, (uint32_t) size-1);


			/*write starting at the third dword*/
			instance_offset = 2;

			/*for each PAGE, get its bus address, fill in the page table entry, and advance*/
			for (i = 0; i < page_count; i++) {
				if (dev->sg->busaddr[idx] == 0) {
					dev->sg->busaddr[idx] =
						pci_map_page(dev->pdev,
							     dev->sg->pagelist[idx],
							     0,
							     PAGE_SIZE,
							     DMA_BIDIRECTIONAL);

#if (LINUX_VERSION_CODE >= KERNEL_VERSION(2,6,27))
					/* Not a 100% sure this is the right kdev in all cases. */
					if (dma_mapping_error(&dev->primary->kdev, dev->sg->busaddr[idx])) {
#else
					if (dma_mapping_error(dev->sg->busaddr[idx])) {
#endif
						return -ENOMEM;
					}
				}

				frame = (uint32_t) dev->sg->busaddr[idx];
				INSTANCE_WR(*gpuobj, instance_offset,
					    frame | pte_flags);

				idx++;
				instance_offset ++;
			}
			}
	} else {
		uint32_t flags0, flags5;

		if (target == NV_DMA_TARGET_VIDMEM) {
			flags0 = 0x00190000;
			flags5 = 0x00010000;
		} else {
			flags0 = 0x7fc00000;
			flags5 = 0x00080000;
		}

		INSTANCE_WR(*gpuobj, 0, flags0 | class);
		INSTANCE_WR(*gpuobj, 1, offset + size - 1);
		INSTANCE_WR(*gpuobj, 2, offset);
		INSTANCE_WR(*gpuobj, 5, flags5);
	}

	(*gpuobj)->engine = NVOBJ_ENGINE_SW;
	(*gpuobj)->class  = class;
	return 0;
}

int
nouveau_gpuobj_gart_dma_new(struct nouveau_channel *chan,
			    uint64_t offset, uint64_t size, int access,
			    struct nouveau_gpuobj **gpuobj,
			    uint32_t *o_ret)
{
	struct drm_device *dev = chan->dev;
	struct drm_nouveau_private *dev_priv = dev->dev_private;
	int ret;

	if (dev_priv->gart_info.type == NOUVEAU_GART_AGP ||
	    (dev_priv->card_type >= NV_50 &&
	     dev_priv->gart_info.type == NOUVEAU_GART_SGDMA)) {
		ret = nouveau_gpuobj_dma_new(chan, NV_CLASS_DMA_IN_MEMORY,
					     offset, size, access,
					     NV_DMA_TARGET_AGP, gpuobj);
		if (o_ret)
			*o_ret = 0;
	} else
	if (dev_priv->gart_info.type == NOUVEAU_GART_SGDMA) {
		*gpuobj = dev_priv->gart_info.sg_ctxdma;
		if (offset & ~0xffffffffULL) {
			DRM_ERROR("obj offset exceeds 32-bits\n");
			return -EINVAL;
		}
		if (o_ret)
			*o_ret = (uint32_t)offset;
		ret = (*gpuobj != NULL) ? 0 : -EINVAL;
	} else {
		DRM_ERROR("Invalid GART type %d\n", dev_priv->gart_info.type);
		return -EINVAL;
	}

	return ret;
}

/* Context objects in the instance RAM have the following structure.
 * On NV40 they are 32 byte long, on NV30 and smaller 16 bytes.

   NV4 - NV30:

   entry[0]
   11:0 class
   12   chroma key enable
   13   user clip enable
   14   swizzle enable
   17:15 patch config:
       scrcopy_and, rop_and, blend_and, scrcopy, srccopy_pre, blend_pre
   18   synchronize enable
   19   endian: 1 big, 0 little
   21:20 dither mode
   23    single step enable
   24    patch status: 0 invalid, 1 valid
   25    context_surface 0: 1 valid
   26    context surface 1: 1 valid
   27    context pattern: 1 valid
   28    context rop: 1 valid
   29,30 context beta, beta4
   entry[1]
   7:0   mono format
   15:8  color format
   31:16 notify instance address
   entry[2]
   15:0  dma 0 instance address
   31:16 dma 1 instance address
   entry[3]
   dma method traps

   NV40:
   No idea what the exact format is. Here's what can be deducted:

   entry[0]:
   11:0  class  (maybe uses more bits here?)
   17    user clip enable
   21:19 patch config
   25    patch status valid ?
   entry[1]:
   15:0  DMA notifier  (maybe 20:0)
   entry[2]:
   15:0  DMA 0 instance (maybe 20:0)
   24    big endian
   entry[3]:
   15:0  DMA 1 instance (maybe 20:0)
   entry[4]:
   entry[5]:
   set to 0?
*/
int
nouveau_gpuobj_gr_new(struct nouveau_channel *chan, int class,
		      struct nouveau_gpuobj **gpuobj)
{
	struct drm_device *dev = chan->dev;
	struct drm_nouveau_private *dev_priv = dev->dev_private;
	int ret;

	DRM_DEBUG("ch%d class=0x%04x\n", chan->id, class);

	ret = nouveau_gpuobj_new(dev, chan,
				 nouveau_gpuobj_class_instmem_size(dev, class),
				 16,
				 NVOBJ_FLAG_ZERO_ALLOC | NVOBJ_FLAG_ZERO_FREE,
				 gpuobj);
	if (ret) {
		DRM_ERROR("Error creating gpuobj: %d\n", ret);
		return ret;
	}

	if (dev_priv->card_type >= NV_50) {
		INSTANCE_WR(*gpuobj, 0, class);
		INSTANCE_WR(*gpuobj, 5, 0x00010000);
	} else {
	switch (class) {
	case NV_CLASS_NULL:
		INSTANCE_WR(*gpuobj, 0, 0x00001030);
		INSTANCE_WR(*gpuobj, 1, 0xFFFFFFFF);
		break;
	default:
		if (dev_priv->card_type >= NV_40) {
			INSTANCE_WR(*gpuobj, 0, class);
#ifdef __BIG_ENDIAN
			INSTANCE_WR(*gpuobj, 2, 0x01000000);
#endif
		} else {
#ifdef __BIG_ENDIAN
			INSTANCE_WR(*gpuobj, 0, class | 0x00080000);
#else
			INSTANCE_WR(*gpuobj, 0, class);
#endif
		}
	}
	}

	(*gpuobj)->engine = NVOBJ_ENGINE_GR;
	(*gpuobj)->class  = class;
	return 0;
}

static int
nouveau_gpuobj_channel_init_pramin(struct nouveau_channel *chan)
{
	struct drm_device *dev = chan->dev;
	struct drm_nouveau_private *dev_priv = dev->dev_private;
	struct nouveau_gpuobj *pramin = NULL;
	int size, base, ret;

	DRM_DEBUG("ch%d\n", chan->id);

	/* Base amount for object storage (4KiB enough?) */
	size = 0x1000;
	base = 0;

	/* PGRAPH context */

	if (dev_priv->card_type == NV_50) {
		/* Various fixed table thingos */
		size += 0x1400; /* mostly unknown stuff */
		size += 0x4000; /* vm pd */
		base  = 0x6000;
		/* RAMHT, not sure about setting size yet, 32KiB to be safe */
		size += 0x8000;
		/* RAMFC */
		size += 0x1000;
		/* PGRAPH context */
		size += 0x70000;
	}

	DRM_DEBUG("ch%d PRAMIN size: 0x%08x bytes, base alloc=0x%08x\n",
		  chan->id, size, base);
	ret = nouveau_gpuobj_new_ref(dev, NULL, NULL, 0, size, 0x1000, 0,
				     &chan->ramin);
	if (ret) {
		DRM_ERROR("Error allocating channel PRAMIN: %d\n", ret);
		return ret;
	}
	pramin = chan->ramin->gpuobj;

	ret = nouveau_mem_init_heap(&chan->ramin_heap,
				    pramin->im_pramin->start + base, size);
	if (ret) {
		DRM_ERROR("Error creating PRAMIN heap: %d\n", ret);
		nouveau_gpuobj_ref_del(dev, &chan->ramin);
		return ret;
	}

	return 0;
}

int
nouveau_gpuobj_channel_init(struct nouveau_channel *chan,
			    uint32_t vram_h, uint32_t tt_h)
{
	struct drm_device *dev = chan->dev;
	struct drm_nouveau_private *dev_priv = dev->dev_private;
	struct nouveau_gpuobj *vram = NULL, *tt = NULL;
	int ret, i;

	INIT_LIST_HEAD(&chan->ramht_refs);

	DRM_DEBUG("ch%d vram=0x%08x tt=0x%08x\n", chan->id, vram_h, tt_h);

	/* Reserve a block of PRAMIN for the channel
	 *XXX: maybe on <NV50 too at some point
	 */
	if (0 || dev_priv->card_type == NV_50) {
		ret = nouveau_gpuobj_channel_init_pramin(chan);
		if (ret)
			return ret;
	}

	/* NV50 VM
	 *  - Allocate per-channel page-directory
	 *  - Point offset 0-512MiB at shared PCIEGART table
	 *  - Point offset 512-1024MiB at shared VRAM table
	 */
	if (dev_priv->card_type >= NV_50) {
		uint32_t vm_offset;

		vm_offset = (dev_priv->chipset & 0xf0) == 0x50 ? 0x1400 : 0x200;
		vm_offset += chan->ramin->gpuobj->im_pramin->start;
		if ((ret = nouveau_gpuobj_new_fake(dev, vm_offset, ~0, 0x4000,
						   0, &chan->vm_pd, NULL)))
			return ret;
		for (i=0; i<0x4000; i+=8) {
			INSTANCE_WR(chan->vm_pd, (i+0)/4, 0x00000000);
			INSTANCE_WR(chan->vm_pd, (i+4)/4, 0xdeadcafe);
		}

		if ((ret = nouveau_gpuobj_ref_add(dev, NULL, 0,
						  dev_priv->gart_info.sg_ctxdma,
						  &chan->vm_gart_pt)))
			return ret;
		INSTANCE_WR(chan->vm_pd, (0+0)/4,
			    chan->vm_gart_pt->instance | 0x03);
		INSTANCE_WR(chan->vm_pd, (0+4)/4, 0x00000000);

		if ((ret = nouveau_gpuobj_ref_add(dev, NULL, 0,
						  dev_priv->vm_vram_pt,
						  &chan->vm_vram_pt)))
			return ret;
		INSTANCE_WR(chan->vm_pd, (8+0)/4,
			    chan->vm_vram_pt->instance | 0x61);
		INSTANCE_WR(chan->vm_pd, (8+4)/4, 0x00000000);
	}

	/* RAMHT */
	if (dev_priv->card_type < NV_50) {
		ret = nouveau_gpuobj_ref_add(dev, NULL, 0, dev_priv->ramht,
					     &chan->ramht);
		if (ret)
			return ret;
	} else {
		ret = nouveau_gpuobj_new_ref(dev, chan, chan, 0,
					     0x8000, 16,
					     NVOBJ_FLAG_ZERO_ALLOC,
					     &chan->ramht);
		if (ret)
			return ret;
	}

	/* VRAM ctxdma */
	if (dev_priv->card_type >= NV_50) {
		ret = nouveau_gpuobj_dma_new(chan, NV_CLASS_DMA_IN_MEMORY,
					     0, 0x100000000ULL,
					     NV_DMA_ACCESS_RW,
					     NV_DMA_TARGET_AGP, &vram);
		if (ret) {
			DRM_ERROR("Error creating VRAM ctxdma: %d\n", ret);
			return ret;
		}
	} else
	if ((ret = nouveau_gpuobj_dma_new(chan, NV_CLASS_DMA_IN_MEMORY,
					  0, dev_priv->fb_available_size,
					  NV_DMA_ACCESS_RW,
					  NV_DMA_TARGET_VIDMEM, &vram))) {
		DRM_ERROR("Error creating VRAM ctxdma: %d\n", ret);
		return ret;
	}

	if ((ret = nouveau_gpuobj_ref_add(dev, chan, vram_h, vram, NULL))) {
		DRM_ERROR("Error referencing VRAM ctxdma: %d\n", ret);
		return ret;
	}

	/* TT memory ctxdma */
	if (dev_priv->card_type >= NV_50) {
		tt = vram;
	} else
	if (dev_priv->gart_info.type != NOUVEAU_GART_NONE) {
		ret = nouveau_gpuobj_gart_dma_new(chan, 0,
						  dev_priv->gart_info.aper_size,
						  NV_DMA_ACCESS_RW, &tt, NULL);
	} else
	if (dev_priv->pci_heap) {
		ret = nouveau_gpuobj_dma_new(chan, NV_CLASS_DMA_IN_MEMORY,
					     0, dev->sg->pages * PAGE_SIZE,
					     NV_DMA_ACCESS_RW,
					     NV_DMA_TARGET_PCI_NONLINEAR, &tt);
	} else {
		DRM_ERROR("Invalid GART type %d\n", dev_priv->gart_info.type);
		ret = -EINVAL;
	}

	if (ret) {
		DRM_ERROR("Error creating TT ctxdma: %d\n", ret);
		return ret;
	}

	ret = nouveau_gpuobj_ref_add(dev, chan, tt_h, tt, NULL);
	if (ret) {
		DRM_ERROR("Error referencing TT ctxdma: %d\n", ret);
		return ret;
	}

	return 0;
}

void
nouveau_gpuobj_channel_takedown(struct nouveau_channel *chan)
{
	struct drm_device *dev = chan->dev;
	struct list_head *entry, *tmp;
	struct nouveau_gpuobj_ref *ref;

	DRM_DEBUG("ch%d\n", chan->id);

	list_for_each_safe(entry, tmp, &chan->ramht_refs) {
		ref = list_entry(entry, struct nouveau_gpuobj_ref, list);

		nouveau_gpuobj_ref_del(dev, &ref);
	}

	nouveau_gpuobj_ref_del(dev, &chan->ramht);

	nouveau_gpuobj_del(dev, &chan->vm_pd);
	nouveau_gpuobj_ref_del(dev, &chan->vm_gart_pt);
	nouveau_gpuobj_ref_del(dev, &chan->vm_vram_pt);

	if (chan->ramin_heap)
		nouveau_mem_takedown(&chan->ramin_heap);
	if (chan->ramin)
		nouveau_gpuobj_ref_del(dev, &chan->ramin);

}

int nouveau_ioctl_grobj_alloc(struct drm_device *dev, void *data,
			      struct drm_file *file_priv)
{
	struct nouveau_channel *chan;
	struct drm_nouveau_grobj_alloc *init = data;
	struct nouveau_gpuobj *gr = NULL;
	int ret;

	NOUVEAU_CHECK_INITIALISED_WITH_RETURN;
	NOUVEAU_GET_USER_CHANNEL_WITH_RETURN(init->channel, file_priv, chan);

	//FIXME: check args, only allow trusted objects to be created

	if (init->handle == ~0)
		return -EINVAL;

	if (nouveau_gpuobj_ref_find(chan, init->handle, NULL) == 0)
		return -EEXIST;

	ret = nouveau_gpuobj_gr_new(chan, init->class, &gr);
	if (ret) {
		DRM_ERROR("Error creating gr object: %d (%d/0x%08x)\n",
			  ret, init->channel, init->handle);
		return ret;
	}

	if ((ret = nouveau_gpuobj_ref_add(dev, chan, init->handle, gr, NULL))) {
		DRM_ERROR("Error referencing gr object: %d (%d/0x%08x\n)",
			  ret, init->channel, init->handle);
		nouveau_gpuobj_del(dev, &gr);
		return ret;
	}

	return 0;
}

int nouveau_ioctl_gpuobj_free(struct drm_device *dev, void *data,
			      struct drm_file *file_priv)
{
	struct drm_nouveau_gpuobj_free *objfree = data;
	struct nouveau_gpuobj_ref *ref;
	struct nouveau_channel *chan;
	int ret;

	NOUVEAU_CHECK_INITIALISED_WITH_RETURN;
	NOUVEAU_GET_USER_CHANNEL_WITH_RETURN(objfree->channel, file_priv, chan);

	if ((ret = nouveau_gpuobj_ref_find(chan, objfree->handle, &ref)))
		return ret;
	nouveau_gpuobj_ref_del(dev, &ref);

	return 0;
}
an class="hl opt">!= list) { prefetch(l->next); entry = list_entry(l, struct drm_buffer_object, lru); atomic_inc(&entry->usage); mutex_unlock(&dev->struct_mutex); mutex_lock(&entry->mutex); mutex_lock(&dev->struct_mutex); list_del_init(l); if (entry->priv_flags & _DRM_BO_FLAG_UNFENCED) { count++; if (entry->fence) drm_fence_usage_deref_locked(&entry->fence); entry->fence = drm_fence_reference_locked(fence); entry->fence_class = entry->new_fence_class; entry->fence_type = entry->new_fence_type; DRM_FLAG_MASKED(entry->priv_flags, 0, _DRM_BO_FLAG_UNFENCED); wake_up_all(&entry->event_queue); drm_bo_add_to_lru(entry); } mutex_unlock(&entry->mutex); drm_bo_usage_deref_locked(&entry); l = list->next; } DRM_DEBUG("Fenced %d buffers\n", count); out: mutex_unlock(&dev->struct_mutex); *used_fence = fence; return ret; } EXPORT_SYMBOL(drm_fence_buffer_objects); /* * bo->mutex locked */ static int drm_bo_evict(struct drm_buffer_object *bo, unsigned mem_type, int no_wait) { int ret = 0; struct drm_device *dev = bo->dev; struct drm_bo_mem_reg evict_mem; /* * Someone might have modified the buffer before we took the * buffer mutex. */ do { bo->priv_flags &= ~_DRM_BO_FLAG_UNLOCKED; if (unlikely(bo->mem.flags & (DRM_BO_FLAG_NO_MOVE | DRM_BO_FLAG_NO_EVICT))) goto out_unlock; if (unlikely(bo->priv_flags & _DRM_BO_FLAG_UNFENCED)) goto out_unlock; if (unlikely(bo->mem.mem_type != mem_type)) goto out_unlock; ret = drm_bo_wait(bo, 0, 1, no_wait, 0); if (ret) goto out_unlock; } while(bo->priv_flags & _DRM_BO_FLAG_UNLOCKED); evict_mem = bo->mem; evict_mem.mm_node = NULL; evict_mem = bo->mem; evict_mem.proposed_flags = dev->driver->bo_driver->evict_flags(bo); mutex_lock(&dev->struct_mutex); list_del_init(&bo->lru); mutex_unlock(&dev->struct_mutex); ret = drm_bo_mem_space(bo, &evict_mem, no_wait); if (ret) { if (ret != -EAGAIN) DRM_ERROR("Failed to find memory space for " "buffer 0x%p eviction.\n", bo); goto out; } ret = drm_bo_handle_move_mem(bo, &evict_mem, 1, no_wait); if (ret) { if (ret != -EAGAIN) DRM_ERROR("Buffer eviction failed\n"); goto out; } DRM_FLAG_MASKED(bo->priv_flags, _DRM_BO_FLAG_EVICTED, _DRM_BO_FLAG_EVICTED); out: mutex_lock(&dev->struct_mutex); if (evict_mem.mm_node) { if (evict_mem.mm_node != bo->pinned_node) drm_memrange_put_block(evict_mem.mm_node); evict_mem.mm_node = NULL; } drm_bo_add_to_lru(bo); BUG_ON(bo->priv_flags & _DRM_BO_FLAG_UNLOCKED); out_unlock: mutex_unlock(&dev->struct_mutex); return ret; } /** * Repeatedly evict memory from the LRU for @mem_type until we create enough * space, or we've evicted everything and there isn't enough space. */ static int drm_bo_mem_force_space(struct drm_device *dev, struct drm_bo_mem_reg *mem, uint32_t mem_type, int no_wait) { struct drm_memrange_node *node; struct drm_buffer_manager *bm = &dev->bm; struct drm_buffer_object *entry; struct drm_mem_type_manager *man = &bm->man[mem_type]; struct list_head *lru; unsigned long num_pages = mem->num_pages; int ret; mutex_lock(&dev->struct_mutex); do { node = drm_memrange_search_free(&man->manager, num_pages, mem->page_alignment, 1); if (node) break; lru = &man->lru; if (lru->next == lru) break; entry = list_entry(lru->next, struct drm_buffer_object, lru); atomic_inc(&entry->usage); mutex_unlock(&dev->struct_mutex); mutex_lock(&entry->mutex); ret = drm_bo_evict(entry, mem_type, no_wait); mutex_unlock(&entry->mutex); drm_bo_usage_deref_unlocked(&entry); if (ret) return ret; mutex_lock(&dev->struct_mutex); } while (1); if (!node) { mutex_unlock(&dev->struct_mutex); return -ENOMEM; } node = drm_memrange_get_block(node, num_pages, mem->page_alignment); if (unlikely(!node)) { mutex_unlock(&dev->struct_mutex); return -ENOMEM; } mutex_unlock(&dev->struct_mutex); mem->mm_node = node; mem->mem_type = mem_type; return 0; } static int drm_bo_mt_compatible(struct drm_mem_type_manager *man, int disallow_fixed, uint32_t mem_type, uint64_t mask, uint32_t *res_mask) { uint64_t cur_flags = drm_bo_type_flags(mem_type); uint64_t flag_diff; if ((man->flags & _DRM_FLAG_MEMTYPE_FIXED) && disallow_fixed) return 0; if (man->flags & _DRM_FLAG_MEMTYPE_CACHED) cur_flags |= DRM_BO_FLAG_CACHED; if (man->flags & _DRM_FLAG_MEMTYPE_MAPPABLE) cur_flags |= DRM_BO_FLAG_MAPPABLE; if (man->flags & _DRM_FLAG_MEMTYPE_CSELECT) DRM_FLAG_MASKED(cur_flags, mask, DRM_BO_FLAG_CACHED); if ((cur_flags & mask & DRM_BO_MASK_MEM) == 0) return 0; if (mem_type == DRM_BO_MEM_LOCAL) { *res_mask = cur_flags; return 1; } flag_diff = (mask ^ cur_flags); if (flag_diff & DRM_BO_FLAG_CACHED_MAPPED) cur_flags |= DRM_BO_FLAG_CACHED_MAPPED; if ((flag_diff & DRM_BO_FLAG_CACHED) && (!(mask & DRM_BO_FLAG_CACHED) || (mask & DRM_BO_FLAG_FORCE_CACHING))) return 0; if ((flag_diff & DRM_BO_FLAG_MAPPABLE) && ((mask & DRM_BO_FLAG_MAPPABLE) || (mask & DRM_BO_FLAG_FORCE_MAPPABLE))) return 0; *res_mask = cur_flags; return 1; } /** * Creates space for memory region @mem according to its type. * * This function first searches for free space in compatible memory types in * the priority order defined by the driver. If free space isn't found, then * drm_bo_mem_force_space is attempted in priority order to evict and find * space. */ int drm_bo_mem_space(struct drm_buffer_object *bo, struct drm_bo_mem_reg *mem, int no_wait) { struct drm_device *dev = bo->dev; struct drm_buffer_manager *bm = &dev->bm; struct drm_mem_type_manager *man; uint32_t num_prios = dev->driver->bo_driver->num_mem_type_prio; const uint32_t *prios = dev->driver->bo_driver->mem_type_prio; uint32_t i; uint32_t mem_type = DRM_BO_MEM_LOCAL; uint32_t cur_flags; int type_found = 0; int type_ok = 0; int has_eagain = 0; struct drm_memrange_node *node = NULL; int ret; mem->mm_node = NULL; for (i = 0; i < num_prios; ++i) { mem_type = prios[i]; man = &bm->man[mem_type]; type_ok = drm_bo_mt_compatible(man, bo->type == drm_bo_type_user, mem_type, mem->proposed_flags, &cur_flags); if (!type_ok) continue; if (mem_type == DRM_BO_MEM_LOCAL) break; if ((mem_type == bo->pinned_mem_type) && (bo->pinned_node != NULL)) { node = bo->pinned_node; break; } mutex_lock(&dev->struct_mutex); if (man->has_type && man->use_type) { type_found = 1; node = drm_memrange_search_free(&man->manager, mem->num_pages, mem->page_alignment, 1); if (node) node = drm_memrange_get_block(node, mem->num_pages, mem->page_alignment); } mutex_unlock(&dev->struct_mutex); if (node) break; } if ((type_ok && (mem_type == DRM_BO_MEM_LOCAL)) || node) { mem->mm_node = node; mem->mem_type = mem_type; mem->flags = cur_flags; return 0; } if (!type_found) return -EINVAL; num_prios = dev->driver->bo_driver->num_mem_busy_prio; prios = dev->driver->bo_driver->mem_busy_prio; for (i = 0; i < num_prios; ++i) { mem_type = prios[i]; man = &bm->man[mem_type]; if (!man->has_type) continue; if (!drm_bo_mt_compatible(man, bo->type == drm_bo_type_user, mem_type, mem->proposed_flags, &cur_flags)) continue; ret = drm_bo_mem_force_space(dev, mem, mem_type, no_wait); if (ret == 0 && mem->mm_node) { mem->flags = cur_flags; return 0; } if (ret == -EAGAIN) has_eagain = 1; } ret = (has_eagain) ? -EAGAIN : -ENOMEM; return ret; } EXPORT_SYMBOL(drm_bo_mem_space); /* * drm_bo_propose_flags: * * @bo: the buffer object getting new flags * * @new_flags: the new set of proposed flag bits * * @new_mask: the mask of bits changed in new_flags * * Modify the proposed_flag bits in @bo */ static int drm_bo_modify_proposed_flags (struct drm_buffer_object *bo, uint64_t new_flags, uint64_t new_mask) { uint32_t new_access; /* Copy unchanging bits from existing proposed_flags */ DRM_FLAG_MASKED(new_flags, bo->mem.proposed_flags, ~new_mask); if (bo->type == drm_bo_type_user && ((new_flags & (DRM_BO_FLAG_CACHED | DRM_BO_FLAG_FORCE_CACHING)) != (DRM_BO_FLAG_CACHED | DRM_BO_FLAG_FORCE_CACHING))) { DRM_ERROR("User buffers require cache-coherent memory.\n"); return -EINVAL; } if (bo->type != drm_bo_type_kernel && (new_mask & DRM_BO_FLAG_NO_EVICT) && !DRM_SUSER(DRM_CURPROC)) { DRM_ERROR("DRM_BO_FLAG_NO_EVICT is only available to priviliged processes.\n"); return -EPERM; } if (likely(new_mask & DRM_BO_MASK_MEM) && (bo->mem.flags & DRM_BO_FLAG_NO_EVICT) && !DRM_SUSER(DRM_CURPROC)) { if (likely(bo->mem.flags & new_flags & new_mask & DRM_BO_MASK_MEM)) new_flags = (new_flags & ~DRM_BO_MASK_MEM) | (bo->mem.flags & DRM_BO_MASK_MEM); else { DRM_ERROR("Incompatible memory type specification " "for NO_EVICT buffer.\n"); return -EPERM; } } if ((new_flags & DRM_BO_FLAG_NO_MOVE)) { DRM_ERROR("DRM_BO_FLAG_NO_MOVE is not properly implemented yet.\n"); return -EPERM; } new_access = new_flags & (DRM_BO_FLAG_EXE | DRM_BO_FLAG_WRITE | DRM_BO_FLAG_READ); if (new_access == 0) { DRM_ERROR("Invalid buffer object rwx properties\n"); return -EINVAL; } bo->mem.proposed_flags = new_flags; return 0; } /* * Call dev->struct_mutex locked. */ struct drm_buffer_object *drm_lookup_buffer_object(struct drm_file *file_priv, uint32_t handle, int check_owner) { struct drm_user_object *uo; struct drm_buffer_object *bo; uo = drm_lookup_user_object(file_priv, handle); if (!uo || (uo->type != drm_buffer_type)) { DRM_ERROR("Could not find buffer object 0x%08x\n", handle); return NULL; } if (check_owner && file_priv != uo->owner) { if (!drm_lookup_ref_object(file_priv, uo, _DRM_REF_USE)) return NULL; } bo = drm_user_object_entry(uo, struct drm_buffer_object, base); atomic_inc(&bo->usage); return bo; } EXPORT_SYMBOL(drm_lookup_buffer_object); /* * Call bo->mutex locked. * Returns -EBUSY if the buffer is currently rendered to or from. 0 otherwise. * Doesn't do any fence flushing as opposed to the drm_bo_busy function. */ static int drm_bo_quick_busy(struct drm_buffer_object *bo, int check_unfenced) { struct drm_fence_object *fence = bo->fence; if (check_unfenced && (bo->priv_flags & _DRM_BO_FLAG_UNFENCED)) return -EBUSY; if (fence) { if (drm_fence_object_signaled(fence, bo->fence_type)) { drm_fence_usage_deref_unlocked(&bo->fence); return 0; } return -EBUSY; } return 0; } int drm_bo_evict_cached(struct drm_buffer_object *bo) { int ret = 0; BUG_ON(bo->priv_flags & _DRM_BO_FLAG_UNFENCED); if (bo->mem.mm_node) ret = drm_bo_evict(bo, DRM_BO_MEM_TT, 1); return ret; } EXPORT_SYMBOL(drm_bo_evict_cached); /* * Wait until a buffer is unmapped. */ static int drm_bo_wait_unmapped(struct drm_buffer_object *bo, int no_wait) { int ret = 0; if (likely(atomic_read(&bo->mapped)) == 0) return 0; if (unlikely(no_wait)) return -EBUSY; do { mutex_unlock(&bo->mutex); ret = wait_event_interruptible(bo->event_queue, atomic_read(&bo->mapped) == 0); mutex_lock(&bo->mutex); bo->priv_flags |= _DRM_BO_FLAG_UNLOCKED; if (ret == -ERESTARTSYS) ret = -EAGAIN; } while((ret == 0) && atomic_read(&bo->mapped) > 0); return ret; } /* * Fill in the ioctl reply argument with buffer info. * Bo locked. */ void drm_bo_fill_rep_arg(struct drm_buffer_object *bo, struct drm_bo_info_rep *rep) { if (!rep) return; rep->handle = bo->base.hash.key; rep->flags = bo->mem.flags; rep->size = bo->num_pages * PAGE_SIZE; rep->offset = bo->offset; /* * drm_bo_type_device buffers have user-visible * handles which can be used to share across * processes. Hand that back to the application */ if (bo->type == drm_bo_type_device) rep->arg_handle = bo->map_list.user_token; else rep->arg_handle = 0; rep->proposed_flags = bo->mem.proposed_flags; rep->buffer_start = bo->buffer_start; rep->fence_flags = bo->fence_type; rep->rep_flags = 0; rep->page_alignment = bo->mem.page_alignment; if ((bo->priv_flags & _DRM_BO_FLAG_UNFENCED) || drm_bo_quick_busy(bo, 1)) { DRM_FLAG_MASKED(rep->rep_flags, DRM_BO_REP_BUSY, DRM_BO_REP_BUSY); } } EXPORT_SYMBOL(drm_bo_fill_rep_arg); /* * Wait for buffer idle and register that we've mapped the buffer. * Mapping is registered as a drm_ref_object with type _DRM_REF_TYPE1, * so that if the client dies, the mapping is automatically * unregistered. */ static int drm_buffer_object_map(struct drm_file *file_priv, uint32_t handle, uint32_t map_flags, unsigned hint, struct drm_bo_info_rep *rep) { struct drm_buffer_object *bo; struct drm_device *dev = file_priv->minor->dev; int ret = 0; int no_wait = hint & DRM_BO_HINT_DONT_BLOCK; mutex_lock(&dev->struct_mutex); bo = drm_lookup_buffer_object(file_priv, handle, 1); mutex_unlock(&dev->struct_mutex); if (!bo) return -EINVAL; mutex_lock(&bo->mutex); do { bo->priv_flags &= ~_DRM_BO_FLAG_UNLOCKED; ret = drm_bo_wait(bo, 0, 1, no_wait, 1); if (unlikely(ret)) goto out; if (bo->mem.flags & DRM_BO_FLAG_CACHED_MAPPED) drm_bo_evict_cached(bo); } while (unlikely(bo->priv_flags & _DRM_BO_FLAG_UNLOCKED)); atomic_inc(&bo->mapped); mutex_lock(&dev->struct_mutex); ret = drm_add_ref_object(file_priv, &bo->base, _DRM_REF_TYPE1); mutex_unlock(&dev->struct_mutex); if (ret) { if (atomic_dec_and_test(&bo->mapped)) wake_up_all(&bo->event_queue); } else drm_bo_fill_rep_arg(bo, rep); out: mutex_unlock(&bo->mutex); drm_bo_usage_deref_unlocked(&bo); return ret; } static int drm_buffer_object_unmap(struct drm_file *file_priv, uint32_t handle) { struct drm_device *dev = file_priv->minor->dev; struct drm_buffer_object *bo; struct drm_ref_object *ro; int ret = 0; mutex_lock(&dev->struct_mutex); bo = drm_lookup_buffer_object(file_priv, handle, 1); if (!bo) { ret = -EINVAL; goto out; } ro = drm_lookup_ref_object(file_priv, &bo->base, _DRM_REF_TYPE1); if (!ro) { ret = -EINVAL; goto out; } drm_remove_ref_object(file_priv, ro); drm_bo_usage_deref_locked(&bo); out: mutex_unlock(&dev->struct_mutex); return ret; } /* * Call struct-sem locked. */ static void drm_buffer_user_object_unmap(struct drm_file *file_priv, struct drm_user_object *uo, enum drm_ref_type action) { struct drm_buffer_object *bo = drm_user_object_entry(uo, struct drm_buffer_object, base); /* * We DON'T want to take the bo->lock here, because we want to * hold it when we wait for unmapped buffer. */ BUG_ON(action != _DRM_REF_TYPE1); if (atomic_dec_and_test(&bo->mapped)) wake_up_all(&bo->event_queue); } /* * bo->mutex locked. * Note that new_mem_flags are NOT transferred to the bo->mem.proposed_flags. */ int drm_bo_move_buffer(struct drm_buffer_object *bo, uint64_t new_mem_flags, int no_wait, int move_unfenced) { struct drm_device *dev = bo->dev; struct drm_buffer_manager *bm = &dev->bm; int ret = 0; struct drm_bo_mem_reg mem; BUG_ON(bo->fence != NULL); mem.num_pages = bo->num_pages; mem.size = mem.num_pages << PAGE_SHIFT; mem.proposed_flags = new_mem_flags; mem.page_alignment = bo->mem.page_alignment; mutex_lock(&bm->evict_mutex); mutex_lock(&dev->struct_mutex); list_del_init(&bo->lru); mutex_unlock(&dev->struct_mutex); /* * Determine where to move the buffer. */ ret = drm_bo_mem_space(bo, &mem, no_wait); if (ret) goto out_unlock; ret = drm_bo_handle_move_mem(bo, &mem, 0, no_wait); out_unlock: mutex_lock(&dev->struct_mutex); if (ret || !move_unfenced) { if (mem.mm_node) { if (mem.mm_node != bo->pinned_node) drm_memrange_put_block(mem.mm_node); mem.mm_node = NULL; } drm_bo_add_to_lru(bo); if (bo->priv_flags & _DRM_BO_FLAG_UNFENCED) { wake_up_all(&bo->event_queue); DRM_FLAG_MASKED(bo->priv_flags, 0, _DRM_BO_FLAG_UNFENCED); } } else { list_add_tail(&bo->lru, &bm->unfenced); DRM_FLAG_MASKED(bo->priv_flags, _DRM_BO_FLAG_UNFENCED, _DRM_BO_FLAG_UNFENCED); } mutex_unlock(&dev->struct_mutex); mutex_unlock(&bm->evict_mutex); return ret; } static int drm_bo_mem_compat(struct drm_bo_mem_reg *mem) { uint32_t flag_diff = (mem->proposed_flags ^ mem->flags); if ((mem->proposed_flags & mem->flags & DRM_BO_MASK_MEM) == 0) return 0; if ((flag_diff & DRM_BO_FLAG_CACHED) && (/* !(mem->proposed_flags & DRM_BO_FLAG_CACHED) ||*/ (mem->proposed_flags & DRM_BO_FLAG_FORCE_CACHING))) return 0; if ((flag_diff & DRM_BO_FLAG_MAPPABLE) && ((mem->proposed_flags & DRM_BO_FLAG_MAPPABLE) || (mem->proposed_flags & DRM_BO_FLAG_FORCE_MAPPABLE))) return 0; return 1; } /** * drm_buffer_object_validate: * * @bo: the buffer object to modify * * @fence_class: the new fence class covering this buffer * * @move_unfenced: a boolean indicating whether switching the * memory space of this buffer should cause the buffer to * be placed on the unfenced list. * * @no_wait: whether this function should return -EBUSY instead * of waiting. * * Change buffer access parameters. This can involve moving * the buffer to the correct memory type, pinning the buffer * or changing the class/type of fence covering this buffer * * Must be called with bo locked. */ static int drm_buffer_object_validate(struct drm_buffer_object *bo, uint32_t fence_class, int move_unfenced, int no_wait, int move_buffer) { struct drm_device *dev = bo->dev; struct drm_buffer_manager *bm = &dev->bm; int ret; if (move_buffer) { ret = drm_bo_move_buffer(bo, bo->mem.proposed_flags, no_wait, move_unfenced); if (ret) { if (ret != -EAGAIN) DRM_ERROR("Failed moving buffer.\n"); if (ret == -ENOMEM) DRM_ERROR("Out of aperture space or " "DRM memory quota.\n"); return ret; } } /* * Pinned buffers. */ if (bo->mem.proposed_flags & (DRM_BO_FLAG_NO_EVICT | DRM_BO_FLAG_NO_MOVE)) { bo->pinned_mem_type = bo->mem.mem_type; mutex_lock(&dev->struct_mutex); list_del_init(&bo->pinned_lru); drm_bo_add_to_pinned_lru(bo); if (bo->pinned_node != bo->mem.mm_node) { if (bo->pinned_node != NULL) drm_memrange_put_block(bo->pinned_node); bo->pinned_node = bo->mem.mm_node; } mutex_unlock(&dev->struct_mutex); } else if (bo->pinned_node != NULL) { mutex_lock(&dev->struct_mutex); if (bo->pinned_node != bo->mem.mm_node) drm_memrange_put_block(bo->pinned_node); list_del_init(&bo->pinned_lru); bo->pinned_node = NULL; mutex_unlock(&dev->struct_mutex); } /* * We might need to add a TTM. */ if (bo->mem.mem_type == DRM_BO_MEM_LOCAL && bo->ttm == NULL) { ret = drm_bo_add_ttm(bo); if (ret) return ret; } /* * Validation has succeeded, move the access and other * non-mapping-related flag bits from the proposed flags to * the active flags */ DRM_FLAG_MASKED(bo->mem.flags, bo->mem.proposed_flags, ~DRM_BO_MASK_MEMTYPE); /* * Finally, adjust lru to be sure. */ mutex_lock(&dev->struct_mutex); list_del(&bo->lru); if (move_unfenced) { list_add_tail(&bo->lru, &bm->unfenced); DRM_FLAG_MASKED(bo->priv_flags, _DRM_BO_FLAG_UNFENCED, _DRM_BO_FLAG_UNFENCED); } else { drm_bo_add_to_lru(bo); if (bo->priv_flags & _DRM_BO_FLAG_UNFENCED) { wake_up_all(&bo->event_queue); DRM_FLAG_MASKED(bo->priv_flags, 0, _DRM_BO_FLAG_UNFENCED); } } mutex_unlock(&dev->struct_mutex); return 0; } /* * This function is called with bo->mutex locked, but may release it * temporarily to wait for events. */ static int drm_bo_prepare_for_validate(struct drm_buffer_object *bo, uint64_t flags, uint64_t mask, uint32_t hint, uint32_t fence_class, int no_wait, int *move_buffer) { struct drm_device *dev = bo->dev; struct drm_bo_driver *driver = dev->driver->bo_driver; uint32_t ftype; int ret; DRM_DEBUG("Proposed flags 0x%016llx, Old flags 0x%016llx\n", (unsigned long long) bo->mem.proposed_flags, (unsigned long long) bo->mem.flags); ret = drm_bo_modify_proposed_flags (bo, flags, mask); if (ret) return ret; ret = drm_bo_wait_unmapped(bo, no_wait); if (ret) return ret; ret = driver->fence_type(bo, &fence_class, &ftype); if (ret) { DRM_ERROR("Driver did not support given buffer permissions.\n"); return ret; } /* * We're switching command submission mechanism, * or cannot simply rely on the hardware serializing for us. * Insert a driver-dependant barrier or wait for buffer idle. */ if ((fence_class != bo->fence_class) || ((ftype ^ bo->fence_type) & bo->fence_type)) { ret = -EINVAL; if (driver->command_stream_barrier) { ret = driver->command_stream_barrier(bo, fence_class, ftype, no_wait); } if (ret && ret != -EAGAIN) ret = drm_bo_wait(bo, 0, 1, no_wait, 1); if (ret) return ret; } bo->new_fence_class = fence_class; bo->new_fence_type = ftype; /* * Check whether we need to move buffer. */ *move_buffer = 0; if (!drm_bo_mem_compat(&bo->mem)) { *move_buffer = 1; ret = drm_bo_wait(bo, 0, 1, no_wait, 1); } return ret; } /** * drm_bo_do_validate: * * @bo: the buffer object * * @flags: access rights, mapping parameters and cacheability. See * the DRM_BO_FLAG_* values in drm.h * * @mask: Which flag values to change; this allows callers to modify * things without knowing the current state of other flags. * * @hint: changes the proceedure for this operation, see the DRM_BO_HINT_* * values in drm.h. * * @fence_class: a driver-specific way of doing fences. Presumably, * this would be used if the driver had more than one submission and * fencing mechanism. At this point, there isn't any use of this * from the user mode code. * * @rep: To be stuffed with the reply from validation * * 'validate' a buffer object. This changes where the buffer is * located, along with changing access modes. */ int drm_bo_do_validate(struct drm_buffer_object *bo, uint64_t flags, uint64_t mask, uint32_t hint, uint32_t fence_class, struct drm_bo_info_rep *rep) { int ret; int no_wait = (hint & DRM_BO_HINT_DONT_BLOCK) != 0; int move_buffer; mutex_lock(&bo->mutex); do { bo->priv_flags &= ~_DRM_BO_FLAG_UNLOCKED; ret = drm_bo_prepare_for_validate(bo, flags, mask, hint, fence_class, no_wait, &move_buffer); if (ret) goto out; } while(unlikely(bo->priv_flags & _DRM_BO_FLAG_UNLOCKED)); ret = drm_buffer_object_validate(bo, fence_class, !(hint & DRM_BO_HINT_DONT_FENCE), no_wait, move_buffer); BUG_ON(bo->priv_flags & _DRM_BO_FLAG_UNLOCKED); out: if (rep) drm_bo_fill_rep_arg(bo, rep); mutex_unlock(&bo->mutex); return ret; } EXPORT_SYMBOL(drm_bo_do_validate); /** * drm_bo_handle_validate * * @file_priv: the drm file private, used to get a handle to the user context * * @handle: the buffer object handle * * @flags: access rights, mapping parameters and cacheability. See * the DRM_BO_FLAG_* values in drm.h * * @mask: Which flag values to change; this allows callers to modify * things without knowing the current state of other flags. * * @hint: changes the proceedure for this operation, see the DRM_BO_HINT_* * values in drm.h. * * @fence_class: a driver-specific way of doing fences. Presumably, * this would be used if the driver had more than one submission and * fencing mechanism. At this point, there isn't any use of this * from the user mode code. * * @rep: To be stuffed with the reply from validation * * @bp_rep: To be stuffed with the buffer object pointer * * Perform drm_bo_do_validate on a buffer referenced by a user-space handle instead * of a pointer to a buffer object. Optionally return a pointer to the buffer object. * This is a convenience wrapper only. */ int drm_bo_handle_validate(struct drm_file *file_priv, uint32_t handle, uint64_t flags, uint64_t mask, uint32_t hint, uint32_t fence_class, struct drm_bo_info_rep *rep, struct drm_buffer_object **bo_rep) { struct drm_device *dev = file_priv->minor->dev; struct drm_buffer_object *bo; int ret; mutex_lock(&dev->struct_mutex); bo = drm_lookup_buffer_object(file_priv, handle, 1); mutex_unlock(&dev->struct_mutex); if (!bo) return -EINVAL; if (bo->base.owner != file_priv) mask &= ~(DRM_BO_FLAG_NO_EVICT | DRM_BO_FLAG_NO_MOVE); ret = drm_bo_do_validate(bo, flags, mask, hint, fence_class, rep); if (!ret && bo_rep) *bo_rep = bo; else drm_bo_usage_deref_unlocked(&bo); return ret; } EXPORT_SYMBOL(drm_bo_handle_validate); static int drm_bo_handle_info(struct drm_file *file_priv, uint32_t handle, struct drm_bo_info_rep *rep) { struct drm_device *dev = file_priv->minor->dev; struct drm_buffer_object *bo; mutex_lock(&dev->struct_mutex); bo = drm_lookup_buffer_object(file_priv, handle, 1); mutex_unlock(&dev->struct_mutex); if (!bo) return -EINVAL; mutex_lock(&bo->mutex); /* * FIXME: Quick busy here? */ drm_bo_busy(bo, 1); drm_bo_fill_rep_arg(bo, rep); mutex_unlock(&bo->mutex); drm_bo_usage_deref_unlocked(&bo); return 0; } static int drm_bo_handle_wait(struct drm_file *file_priv, uint32_t handle, uint32_t hint, struct drm_bo_info_rep *rep) { struct drm_device *dev = file_priv->minor->dev; struct drm_buffer_object *bo; int no_wait = hint & DRM_BO_HINT_DONT_BLOCK; int ret; mutex_lock(&dev->struct_mutex); bo = drm_lookup_buffer_object(file_priv, handle, 1); mutex_unlock(&dev->struct_mutex); if (!bo) return -EINVAL; mutex_lock(&bo->mutex); ret = drm_bo_wait(bo, hint & DRM_BO_HINT_WAIT_LAZY, 1, no_wait, 1); if (ret) goto out; drm_bo_fill_rep_arg(bo, rep); out: mutex_unlock(&bo->mutex); drm_bo_usage_deref_unlocked(&bo); return ret; } int drm_buffer_object_create(struct drm_device *dev, unsigned long size, enum drm_bo_type type, uint64_t flags, uint32_t hint, uint32_t page_alignment, unsigned long buffer_start, struct drm_buffer_object **buf_obj) { struct drm_buffer_manager *bm = &dev->bm; struct drm_buffer_object *bo; int ret = 0; unsigned long num_pages; size += buffer_start & ~PAGE_MASK; num_pages = (size + PAGE_SIZE - 1) >> PAGE_SHIFT; if (num_pages == 0) { DRM_ERROR("Illegal buffer object size.\n"); return -EINVAL; } bo = drm_ctl_calloc(1, sizeof(*bo), DRM_MEM_BUFOBJ); if (!bo) return -ENOMEM; mutex_init(&bo->mutex); mutex_lock(&bo->mutex); atomic_set(&bo->usage, 1); atomic_set(&bo->mapped, 0); DRM_INIT_WAITQUEUE(&bo->event_queue); INIT_LIST_HEAD(&bo->lru); INIT_LIST_HEAD(&bo->pinned_lru); INIT_LIST_HEAD(&bo->ddestroy); #ifdef DRM_ODD_MM_COMPAT INIT_LIST_HEAD(&bo->p_mm_list); INIT_LIST_HEAD(&bo->vma_list); #endif bo->dev = dev; bo->type = type; bo->num_pages = num_pages; bo->mem.mem_type = DRM_BO_MEM_LOCAL; bo->mem.num_pages = bo->num_pages; bo->mem.mm_node = NULL; bo->mem.page_alignment = page_alignment; bo->buffer_start = buffer_start & PAGE_MASK; bo->priv_flags = 0; bo->mem.flags = (DRM_BO_FLAG_MEM_LOCAL | DRM_BO_FLAG_CACHED | DRM_BO_FLAG_MAPPABLE); bo->mem.proposed_flags = 0; atomic_inc(&bm->count); /* * Use drm_bo_modify_proposed_flags to error-check the proposed flags */ ret = drm_bo_modify_proposed_flags (bo, flags, flags); if (ret) goto out_err; /* * For drm_bo_type_device buffers, allocate * address space from the device so that applications * can mmap the buffer from there */ if (bo->type == drm_bo_type_device) { mutex_lock(&dev->struct_mutex); ret = drm_bo_setup_vm_locked(bo); mutex_unlock(&dev->struct_mutex); if (ret) goto out_err; } mutex_unlock(&bo->mutex); ret = drm_bo_do_validate(bo, 0, 0, hint | DRM_BO_HINT_DONT_FENCE, 0, NULL); if (ret) goto out_err_unlocked; *buf_obj = bo; return 0; out_err: mutex_unlock(&bo->mutex); out_err_unlocked: drm_bo_usage_deref_unlocked(&bo); return ret; } EXPORT_SYMBOL(drm_buffer_object_create); static int drm_bo_add_user_object(struct drm_file *file_priv, struct drm_buffer_object *bo, int shareable) { struct drm_device *dev = file_priv->minor->dev; int ret; mutex_lock(&dev->struct_mutex); ret = drm_add_user_object(file_priv, &bo->base, shareable); if (ret) goto out; bo->base.remove = drm_bo_base_deref_locked; bo->base.type = drm_buffer_type; bo->base.ref_struct_locked = NULL; bo->base.unref = drm_buffer_user_object_unmap; out: mutex_unlock(&dev->struct_mutex); return ret; } int drm_bo_create_ioctl(struct drm_device *dev, void *data, struct drm_file *file_priv) { struct drm_bo_create_arg *arg = data; struct drm_bo_create_req *req = &arg->d.req; struct drm_bo_info_rep *rep = &arg->d.rep; struct drm_buffer_object *entry; enum drm_bo_type bo_type; int ret = 0; DRM_DEBUG("drm_bo_create_ioctl: %dkb, %dkb align\n", (int)(req->size / 1024), req->page_alignment * 4); if (!dev->bm.initialized) { DRM_ERROR("Buffer object manager is not initialized.\n"); return -EINVAL; } /* * If the buffer creation request comes in with a starting address, * that points at the desired user pages to map. Otherwise, create * a drm_bo_type_device buffer, which uses pages allocated from the kernel */ bo_type = (req->buffer_start) ? drm_bo_type_user : drm_bo_type_device; /* * User buffers cannot be shared */ if (bo_type == drm_bo_type_user) req->flags &= ~DRM_BO_FLAG_SHAREABLE; ret = drm_buffer_object_create(file_priv->minor->dev, req->size, bo_type, req->flags, req->hint, req->page_alignment, req->buffer_start, &entry); if (ret) goto out; ret = drm_bo_add_user_object(file_priv, entry, req->flags & DRM_BO_FLAG_SHAREABLE); if (ret) { drm_bo_usage_deref_unlocked(&entry); goto out; } mutex_lock(&entry->mutex); drm_bo_fill_rep_arg(entry, rep); mutex_unlock(&entry->mutex); out: return ret; } int drm_bo_setstatus_ioctl(struct drm_device *dev, void *data, struct drm_file *file_priv) { struct drm_bo_map_wait_idle_arg *arg = data; struct drm_bo_info_req *req = &arg->d.req; struct drm_bo_info_rep *rep = &arg->d.rep; struct drm_buffer_object *bo; int ret; if (!dev->bm.initialized) { DRM_ERROR("Buffer object manager is not initialized.\n"); return -EINVAL; } ret = drm_bo_read_lock(&dev->bm.bm_lock, 1); if (ret) return ret; mutex_lock(&dev->struct_mutex); bo = drm_lookup_buffer_object(file_priv, req->handle, 1); mutex_unlock(&dev->struct_mutex); if (!bo) return -EINVAL; if (bo->base.owner != file_priv) req->mask &= ~(DRM_BO_FLAG_NO_EVICT | DRM_BO_FLAG_NO_MOVE); ret = drm_bo_do_validate(bo, req->flags, req->mask, req->hint | DRM_BO_HINT_DONT_FENCE, bo->fence_class, rep); drm_bo_usage_deref_unlocked(&bo); (void) drm_bo_read_unlock(&dev->bm.bm_lock); return ret; } int drm_bo_map_ioctl(struct drm_device *dev, void *data, struct drm_file *file_priv) { struct drm_bo_map_wait_idle_arg *arg = data; struct drm_bo_info_req *req = &arg->d.req; struct drm_bo_info_rep *rep = &arg->d.rep; int ret; if (!dev->bm.initialized) { DRM_ERROR("Buffer object manager is not initialized.\n"); return -EINVAL; } ret = drm_buffer_object_map(file_priv, req->handle, req->mask, req->hint, rep); if (ret) return ret; return 0; } int drm_bo_unmap_ioctl(struct drm_device *dev, void *data, struct drm_file *file_priv) { struct drm_bo_handle_arg *arg = data; int ret; if (!dev->bm.initialized) { DRM_ERROR("Buffer object manager is not initialized.\n"); return -EINVAL; } ret = drm_buffer_object_unmap(file_priv, arg->handle); return ret; } int drm_bo_reference_ioctl(struct drm_device *dev, void *data, struct drm_file *file_priv) { struct drm_bo_reference_info_arg *arg = data; struct drm_bo_handle_arg *req = &arg->d.req; struct drm_bo_info_rep *rep = &arg->d.rep; struct drm_user_object *uo; int ret; if (!dev->bm.initialized) { DRM_ERROR("Buffer object manager is not initialized.\n"); return -EINVAL; } ret = drm_user_object_ref(file_priv, req->handle, drm_buffer_type, &uo); if (ret) return ret; ret = drm_bo_handle_info(file_priv, req->handle, rep); if (ret) return ret; return 0; } int drm_bo_unreference_ioctl(struct drm_device *dev, void *data, struct drm_file *file_priv) { struct drm_bo_handle_arg *arg = data; int ret = 0; if (!dev->bm.initialized) { DRM_ERROR("Buffer object manager is not initialized.\n"); return -EINVAL; } ret = drm_user_object_unref(file_priv, arg->handle, drm_buffer_type); return ret; } int drm_bo_info_ioctl(struct drm_device *dev, void *data, struct drm_file *file_priv) { struct drm_bo_reference_info_arg *arg = data; struct drm_bo_handle_arg *req = &arg->d.req; struct drm_bo_info_rep *rep = &arg->d.rep; int ret; if (!dev->bm.initialized) { DRM_ERROR("Buffer object manager is not initialized.\n"); return -EINVAL; } ret = drm_bo_handle_info(file_priv, req->handle, rep); if (ret) return ret; return 0; } int drm_bo_wait_idle_ioctl(struct drm_device *dev, void *data, struct drm_file *file_priv) { struct drm_bo_map_wait_idle_arg *arg = data; struct drm_bo_info_req *req = &arg->d.req; struct drm_bo_info_rep *rep = &arg->d.rep; int ret; if (!dev->bm.initialized) { DRM_ERROR("Buffer object manager is not initialized.\n"); return -EINVAL; } ret = drm_bo_handle_wait(file_priv, req->handle, req->hint, rep); if (ret) return ret; return 0; } static int drm_bo_leave_list(struct drm_buffer_object *bo, uint32_t mem_type, int free_pinned, int allow_errors) { struct drm_device *dev = bo->dev; int ret = 0; mutex_lock(&bo->mutex); ret = drm_bo_expire_fence(bo, allow_errors); if (ret) goto out; if (free_pinned) { DRM_FLAG_MASKED(bo->mem.flags, 0, DRM_BO_FLAG_NO_MOVE); mutex_lock(&dev->struct_mutex); list_del_init(&bo->pinned_lru); if (bo->pinned_node == bo->mem.mm_node) bo->pinned_node = NULL; if (bo->pinned_node != NULL) { drm_memrange_put_block(bo->pinned_node); bo->pinned_node = NULL; } mutex_unlock(&dev->struct_mutex); } if (bo->mem.flags & DRM_BO_FLAG_NO_EVICT) { DRM_ERROR("A DRM_BO_NO_EVICT buffer present at " "cleanup. Removing flag and evicting.\n"); bo->mem.flags &= ~DRM_BO_FLAG_NO_EVICT; bo->mem.proposed_flags &= ~DRM_BO_FLAG_NO_EVICT; } if (bo->mem.mem_type == mem_type) ret = drm_bo_evict(bo, mem_type, 0); if (ret) { if (allow_errors) { goto out; } else { ret = 0; DRM_ERROR("Cleanup eviction failed\n"); } } out: mutex_unlock(&bo->mutex); return ret; } static struct drm_buffer_object *drm_bo_entry(struct list_head *list, int pinned_list) { if (pinned_list) return list_entry(list, struct drm_buffer_object, pinned_lru); else return list_entry(list, struct drm_buffer_object, lru); } /* * dev->struct_mutex locked. */ static int drm_bo_force_list_clean(struct drm_device *dev, struct list_head *head, unsigned mem_type, int free_pinned, int allow_errors, int pinned_list) { struct list_head *list, *next, *prev; struct drm_buffer_object *entry, *nentry; int ret; int do_restart; /* * The list traversal is a bit odd here, because an item may * disappear from the list when we release the struct_mutex or * when we decrease the usage count. Also we're not guaranteed * to drain pinned lists, so we can't always restart. */ restart: nentry = NULL; list_for_each_safe(list, next, head) { prev = list->prev; entry = (nentry != NULL) ? nentry: drm_bo_entry(list, pinned_list); atomic_inc(&entry->usage); if (nentry) { atomic_dec(&nentry->usage); nentry = NULL; } /* * Protect the next item from destruction, so we can check * its list pointers later on. */ if (next != head) { nentry = drm_bo_entry(next, pinned_list); atomic_inc(&nentry->usage); } mutex_unlock(&dev->struct_mutex); ret = drm_bo_leave_list(entry, mem_type, free_pinned, allow_errors); mutex_lock(&dev->struct_mutex); drm_bo_usage_deref_locked(&entry); if (ret) return ret; /* * Has the next item disappeared from the list? */ do_restart = ((next->prev != list) && (next->prev != prev)); if (nentry != NULL && do_restart) drm_bo_usage_deref_locked(&nentry); if (do_restart) goto restart; } return 0; } int drm_bo_clean_mm(struct drm_device *dev, unsigned mem_type, int kern_clean) { struct drm_buffer_manager *bm = &dev->bm; struct drm_mem_type_manager *man = &bm->man[mem_type]; int ret = -EINVAL; if (mem_type >= DRM_BO_MEM_TYPES) { DRM_ERROR("Illegal memory type %d\n", mem_type); return ret; } if (!man->has_type) { DRM_ERROR("Trying to take down uninitialized " "memory manager type %u\n", mem_type); return ret; } if ((man->kern_init_type) && (kern_clean == 0)) { DRM_ERROR("Trying to take down kernel initialized " "memory manager type %u\n", mem_type); return -EPERM; } man->use_type = 0; man->has_type = 0; ret = 0; if (mem_type > 0) { BUG_ON(!list_empty(&bm->unfenced)); drm_bo_force_list_clean(dev, &man->lru, mem_type, 1, 0, 0); drm_bo_force_list_clean(dev, &man->pinned, mem_type, 1, 0, 1); if (drm_memrange_clean(&man->manager)) { drm_memrange_takedown(&man->manager); } else { ret = -EBUSY; } } return ret; } EXPORT_SYMBOL(drm_bo_clean_mm); /** *Evict all buffers of a particular mem_type, but leave memory manager *regions for NO_MOVE buffers intact. New buffers cannot be added at this *point since we have the hardware lock. */ static int drm_bo_lock_mm(struct drm_device *dev, unsigned mem_type) { int ret; struct drm_buffer_manager *bm = &dev->bm; struct drm_mem_type_manager *man = &bm->man[mem_type]; if (mem_type == 0 || mem_type >= DRM_BO_MEM_TYPES) { DRM_ERROR("Illegal memory manager memory type %u.\n", mem_type); return -EINVAL; } if (!man->has_type) { DRM_ERROR("Memory type %u has not been initialized.\n", mem_type); return 0; } ret = drm_bo_force_list_clean(dev, &man->lru, mem_type, 0, 1, 0); if (ret) return ret; ret = drm_bo_force_list_clean(dev, &man->pinned, mem_type, 0, 1, 1); return ret; } int drm_bo_init_mm(struct drm_device *dev, unsigned type, unsigned long p_offset, unsigned long p_size, int kern_init) { struct drm_buffer_manager *bm = &dev->bm; int ret = -EINVAL; struct drm_mem_type_manager *man; if (type >= DRM_BO_MEM_TYPES) { DRM_ERROR("Illegal memory type %d\n", type); return ret; } man = &bm->man[type]; if (man->has_type) { DRM_ERROR("Memory manager already initialized for type %d\n", type); return ret; } ret = dev->driver->bo_driver->init_mem_type(dev, type, man); if (ret) return ret; ret = 0; if (type != DRM_BO_MEM_LOCAL) { if (!p_size) { DRM_ERROR("Zero size memory manager type %d\n", type); return ret; } ret = drm_memrange_init(&man->manager, p_offset, p_size); if (ret) return ret; } man->has_type = 1; man->use_type = 1; man->kern_init_type = kern_init; man->size = p_size; INIT_LIST_HEAD(&man->lru); INIT_LIST_HEAD(&man->pinned); return 0; } EXPORT_SYMBOL(drm_bo_init_mm); /* * This function is intended to be called on drm driver unload. * If you decide to call it from lastclose, you must protect the call * from a potentially racing drm_bo_driver_init in firstopen. * (This may happen on X server restart). */ int drm_bo_driver_finish(struct drm_device *dev) { struct drm_buffer_manager *bm = &dev->bm; int ret = 0; unsigned i = DRM_BO_MEM_TYPES; struct drm_mem_type_manager *man; mutex_lock(&dev->struct_mutex); if (!bm->initialized) goto out; bm->initialized = 0; while (i--) { man = &bm->man[i]; if (man->has_type) { man->use_type = 0; if ((i != DRM_BO_MEM_LOCAL) && drm_bo_clean_mm(dev, i, 1)) { ret = -EBUSY; DRM_ERROR("DRM memory manager type %d " "is not clean.\n", i); } man->has_type = 0; } } mutex_unlock(&dev->struct_mutex); if (!cancel_delayed_work(&bm->wq)) flush_scheduled_work(); mutex_lock(&dev->struct_mutex); drm_bo_delayed_delete(dev, 1); if (list_empty(&bm->ddestroy)) DRM_DEBUG("Delayed destroy list was clean\n"); if (list_empty(&bm->man[0].lru)) DRM_DEBUG("Swap list was clean\n"); if (list_empty(&bm->man[0].pinned)) DRM_DEBUG("NO_MOVE list was clean\n"); if (list_empty(&bm->unfenced)) DRM_DEBUG("Unfenced list was clean\n"); #if (LINUX_VERSION_CODE < KERNEL_VERSION(2,6,15)) ClearPageReserved(bm->dummy_read_page); #endif __free_page(bm->dummy_read_page); out: mutex_unlock(&dev->struct_mutex); return ret; } /* * This function is intended to be called on drm driver load. * If you decide to call it from firstopen, you must protect the call * from a potentially racing drm_bo_driver_finish in lastclose. * (This may happen on X server restart). */ int drm_bo_driver_init(struct drm_device *dev) { struct drm_bo_driver *driver = dev->driver->bo_driver; struct drm_buffer_manager *bm = &dev->bm; int ret = -EINVAL; bm->dummy_read_page = NULL; drm_bo_init_lock(&bm->bm_lock); mutex_lock(&dev->struct_mutex); if (!driver) goto out_unlock; bm->dummy_read_page = alloc_page(__GFP_ZERO | GFP_DMA32); if (!bm->dummy_read_page) { ret = -ENOMEM; goto out_unlock; } #if (LINUX_VERSION_CODE < KERNEL_VERSION(2,6,15)) SetPageReserved(bm->dummy_read_page); #endif /* * Initialize the system memory buffer type. * Other types need to be driver / IOCTL initialized. */ ret = drm_bo_init_mm(dev, DRM_BO_MEM_LOCAL, 0, 0, 1); if (ret) goto out_unlock; #if LINUX_VERSION_CODE < KERNEL_VERSION(2,6,20) INIT_WORK(&bm->wq, &drm_bo_delayed_workqueue, dev); #else INIT_DELAYED_WORK(&bm->wq, drm_bo_delayed_workqueue); #endif bm->initialized = 1; bm->nice_mode = 1; atomic_set(&bm->count, 0); bm->cur_pages = 0; INIT_LIST_HEAD(&bm->unfenced); INIT_LIST_HEAD(&bm->ddestroy); out_unlock: mutex_unlock(&dev->struct_mutex); return ret; } EXPORT_SYMBOL(drm_bo_driver_init); int drm_mm_init_ioctl(struct drm_device *dev, void *data, struct drm_file *file_priv) { struct drm_mm_init_arg *arg = data; struct drm_buffer_manager *bm = &dev->bm; struct drm_bo_driver *driver = dev->driver->bo_driver; int ret; if (!driver) { DRM_ERROR("Buffer objects are not supported by this driver\n"); return -EINVAL; } ret = drm_bo_write_lock(&bm->bm_lock, 1, file_priv); if (ret) return ret; ret = -EINVAL; if (arg->magic != DRM_BO_INIT_MAGIC) { DRM_ERROR("You are using an old libdrm that is not compatible with\n" "\tthe kernel DRM module. Please upgrade your libdrm.\n"); return -EINVAL; } if (arg->major != DRM_BO_INIT_MAJOR) { DRM_ERROR("libdrm and kernel DRM buffer object interface major\n" "\tversion don't match. Got %d, expected %d.\n", arg->major, DRM_BO_INIT_MAJOR); return -EINVAL; } mutex_lock(&dev->struct_mutex); if (!bm->initialized) { DRM_ERROR("DRM memory manager was not initialized.\n"); goto out; } if (arg->mem_type == 0) { DRM_ERROR("System memory buffers already initialized.\n"); goto out; } ret = drm_bo_init_mm(dev, arg->mem_type, arg->p_offset, arg->p_size, 0); out: mutex_unlock(&dev->struct_mutex); (void) drm_bo_write_unlock(&bm->bm_lock, file_priv); if (ret) return ret; return 0; } int drm_mm_takedown_ioctl(struct drm_device *dev, void *data, struct drm_file *file_priv) { struct drm_mm_type_arg *arg = data; struct drm_buffer_manager *bm = &dev->bm; struct drm_bo_driver *driver = dev->driver->bo_driver; int ret; if (!driver) { DRM_ERROR("Buffer objects are not supported by this driver\n"); return -EINVAL; } ret = drm_bo_write_lock(&bm->bm_lock, 0, file_priv); if (ret) return ret; mutex_lock(&dev->struct_mutex); ret = -EINVAL; if (!bm->initialized) { DRM_ERROR("DRM memory manager was not initialized\n"); goto out; } if (arg->mem_type == 0) { DRM_ERROR("No takedown for System memory buffers.\n"); goto out; } ret = 0; if ((ret = drm_bo_clean_mm(dev, arg->mem_type, 0))) { if (ret == -EINVAL) DRM_ERROR("Memory manager type %d not clean. " "Delaying takedown\n", arg->mem_type); ret = 0; } out: mutex_unlock(&dev->struct_mutex); (void) drm_bo_write_unlock(&bm->bm_lock, file_priv); if (ret) return ret; return 0; } int drm_mm_lock_ioctl(struct drm_device *dev, void *data, struct drm_file *file_priv) { struct drm_mm_type_arg *arg = data; struct drm_bo_driver *driver = dev->driver->bo_driver; int ret; if (!driver) { DRM_ERROR("Buffer objects are not supported by this driver\n"); return -EINVAL; } if (arg->lock_flags & DRM_BO_LOCK_IGNORE_NO_EVICT) { DRM_ERROR("Lock flag DRM_BO_LOCK_IGNORE_NO_EVICT not supported yet.\n"); return -EINVAL; } if (arg->lock_flags & DRM_BO_LOCK_UNLOCK_BM) { ret = drm_bo_write_lock(&dev->bm.bm_lock, 1, file_priv); if (ret) return ret; } mutex_lock(&dev->struct_mutex); ret = drm_bo_lock_mm(dev, arg->mem_type); mutex_unlock(&dev->struct_mutex); if (ret) { (void) drm_bo_write_unlock(&dev->bm.bm_lock, file_priv); return ret; } return 0; } int drm_mm_unlock_ioctl(struct drm_device *dev, void *data, struct drm_file *file_priv) { struct drm_mm_type_arg *arg = data; struct drm_bo_driver *driver = dev->driver->bo_driver; int ret; if (!driver) { DRM_ERROR("Buffer objects are not supported by this driver\n"); return -EINVAL; } if (arg->lock_flags & DRM_BO_LOCK_UNLOCK_BM) { ret = drm_bo_write_unlock(&dev->bm.bm_lock, file_priv); if (ret) return ret; } return 0; } int drm_mm_info_ioctl(struct drm_device *dev, void *data, struct drm_file *file_priv) { struct drm_mm_info_arg *arg = data; struct drm_buffer_manager *bm = &dev->bm; struct drm_bo_driver *driver = dev->driver->bo_driver; struct drm_mem_type_manager *man; int ret = 0; int mem_type = arg->mem_type; if (!driver) { DRM_ERROR("Buffer objects are not supported by this driver\n"); return -EINVAL; } if (mem_type >= DRM_BO_MEM_TYPES) { DRM_ERROR("Illegal memory type %d\n", arg->mem_type); return -EINVAL; } mutex_lock(&dev->struct_mutex); if (!bm->initialized) { DRM_ERROR("DRM memory manager was not initialized\n"); ret = -EINVAL; goto out; } man = &bm->man[arg->mem_type]; arg->p_size = man->size; out: mutex_unlock(&dev->struct_mutex); return ret; } /* * buffer object vm functions. */ int drm_mem_reg_is_pci(struct drm_device *dev, struct drm_bo_mem_reg *mem) { struct drm_buffer_manager *bm = &dev->bm; struct drm_mem_type_manager *man = &bm->man[mem->mem_type]; if (!(man->flags & _DRM_FLAG_MEMTYPE_FIXED)) { if (mem->mem_type == DRM_BO_MEM_LOCAL) return 0; if (man->flags & _DRM_FLAG_MEMTYPE_CMA) return 0; if (mem->flags & DRM_BO_FLAG_CACHED) return 0; } return 1; } EXPORT_SYMBOL(drm_mem_reg_is_pci); /** * \c Get the PCI offset for the buffer object memory. * * \param bo The buffer object. * \param bus_base On return the base of the PCI region * \param bus_offset On return the byte offset into the PCI region * \param bus_size On return the byte size of the buffer object or zero if * the buffer object memory is not accessible through a PCI region. * \return Failure indication. * * Returns -EINVAL if the buffer object is currently not mappable. * Otherwise returns zero. */ int drm_bo_pci_offset(struct drm_device *dev, struct drm_bo_mem_reg *mem, unsigned long *bus_base, unsigned long *bus_offset, unsigned long *bus_size) { struct drm_buffer_manager *bm = &dev->bm; struct drm_mem_type_manager *man = &bm->man[mem->mem_type]; *bus_size = 0; if (!(man->flags & _DRM_FLAG_MEMTYPE_MAPPABLE)) return -EINVAL; if (drm_mem_reg_is_pci(dev, mem)) { *bus_offset = mem->mm_node->start << PAGE_SHIFT; *bus_size = mem->num_pages << PAGE_SHIFT; *bus_base = man->io_offset; } return 0; } /** * \c Kill all user-space virtual mappings of this buffer object. * * \param bo The buffer object. * * Call bo->mutex locked. */ void drm_bo_unmap_virtual(struct drm_buffer_object *bo) { struct drm_device *dev = bo->dev; loff_t offset = ((loff_t) bo->map_list.hash.key) << PAGE_SHIFT; loff_t holelen = ((loff_t) bo->mem.num_pages) << PAGE_SHIFT; if (!dev->dev_mapping) return; unmap_mapping_range(dev->dev_mapping, offset, holelen, 1); } /** * drm_bo_takedown_vm_locked: * * @bo: the buffer object to remove any drm device mapping * * Remove any associated vm mapping on the drm device node that * would have been created for a drm_bo_type_device buffer */ static void drm_bo_takedown_vm_locked(struct drm_buffer_object *bo) { struct drm_map_list *list; drm_local_map_t *map; struct drm_device *dev = bo->dev; DRM_ASSERT_LOCKED(&dev->struct_mutex); if (bo->type != drm_bo_type_device) return; list = &bo->map_list; if (list->user_token) { drm_ht_remove_item(&dev->map_hash, &list->hash); list->user_token = 0; } if (list->file_offset_node) { drm_memrange_put_block(list->file_offset_node); list->file_offset_node = NULL; } map = list->map; if (!map) return; drm_ctl_free(map, sizeof(*map), DRM_MEM_BUFOBJ); list->map = NULL; list->user_token = 0ULL; drm_bo_usage_deref_locked(&bo); } /** * drm_bo_setup_vm_locked: * * @bo: the buffer to allocate address space for * * Allocate address space in the drm device so that applications * can mmap the buffer and access the contents. This only * applies to drm_bo_type_device objects as others are not * placed in the drm device address space. */ static int drm_bo_setup_vm_locked(struct drm_buffer_object *bo) { struct drm_map_list *list = &bo->map_list; drm_local_map_t *map; struct drm_device *dev = bo->dev; DRM_ASSERT_LOCKED(&dev->struct_mutex); list->map = drm_ctl_calloc(1, sizeof(*map), DRM_MEM_BUFOBJ); if (!list->map) return -ENOMEM; map = list->map; map->offset = 0; map->type = _DRM_TTM; map->flags = _DRM_REMOVABLE; map->size = bo->mem.num_pages * PAGE_SIZE; atomic_inc(&bo->usage); map->handle = (void *)bo; list->file_offset_node = drm_memrange_search_free(&dev->offset_manager, bo->mem.num_pages, 0, 0);